相交线与平行线知识点与练习(良心出品必属精品)_第1页
相交线与平行线知识点与练习(良心出品必属精品)_第2页
相交线与平行线知识点与练习(良心出品必属精品)_第3页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、知识点一:邻补角定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这样的关系的两个角互为邻补角。注意:(1)邻补角形成的前提是两直线相交;(2)互为邻补角要同时满足三个条件:1、有公共顶点;2、其中一边是公共边; 3、另一边互为反向延长线;( 3)邻补角包含了两个角的位置关系,又包括两个角的数量关系。 “邻”指位置相邻的,“补”指两个角的和为 180°。例1 若两个角互为邻补角且度数之比为3:2,求这两个角的度数。知识点二:对顶角(1)定义:两个角有一个公共的顶点, 并且一个角的两边分别ED是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角。例 1:如图所示:

2、直线AB、CD相交于点 O,OE、OF是过点 O的ABOCF射线,其中构成对顶角的是()A. AOF和 DOEB.EOF和 BOEC. BOC和 AOD D.COF和 BOD1(2)对顶角的性质:对顶角相等。E例 2:如图,直线 EF交直线 AB、CD于 G、H两点,1=2,3=120°,求 4 的度数。AGBCHDF练:如图,直线AB、CD、EF相交于点 O, AOE=24°,BOC=3AOC,DF求 DOF的度数。ABEC知识点三:垂线定义:两条直线相交成90°角,则这两条直线互相垂直。其中C的一条直线叫做另一条直线的垂线,它们的交点叫作垂足。 如果 aE是

3、b 的垂线,那么b 也是 a 的垂线,写成: ab 或 ba。A B OFD例:如图所示,已知直线AB、CD、EF相交于点 O,且 CDAB。 AOE:AOD=2:25,求 BOF、 DOF的度数。知识点四:垂线的画法1、 三角板画法:一落:让直角三角形的一条直角边落在已知直线上,即与已知直线重合;二移:沿已知直线移动三角板,使其另一条直角边经过已知点;三画:沿与已知直线不重合的直角边画直线,这条直线就是已知直线的垂线。2、 量角器画法:一落:将量角器的 0°刻度线与已知直线重合;二移:沿已知直线移动量角器, 使 90°刻度线经过已知点, 作出 90°刻度线上的另

4、一点;“三画”用量角器的底边连接已知点和另一点,C这条直线就是已知直线的垂线。Q例:如图所示:直线AB、CD相交于点 O,Q是 CD点。( 1)过点 Q画 AB的垂线, E 为垂足;( 2)过点 O画 CD的垂线。ABO上一D3知识点 5:垂线的性质:性质 1:在同一平面内,过一点有且只有一条直线于已知直线垂直。 “有”表示存在,“只有”表示唯一。性质 2:连接直线外一点与直线上各点的所有线段中,垂线段最短。简单地说:垂线段最短。例:如图,在铁路旁边有一个村庄 A,现要建一个火村庄车站,为了使此村庄的人乘火车最方便(即距离最铁路近),应怎样选择火车站的位置呢?请你画图说明,火车站并解释其中所蕴

5、含的数学道理。垂直、垂线、垂线段的概念辨析:垂直:直线 AB,CD相交,所交的角是90°, AB与 CD互相垂直。垂线:两条直线互相垂直,其中一条直线叫做另一条直线的垂线,单独一条直线不能叫做垂线。垂线段:连接直线 l 外一点 A与直线 l 上各点的线段中,与直线 l 垂直的线段叫做点 A 到直线 l 的垂线段。例:下列说法不正确的是()4A. 经过一点能画一条直线和已知直线垂直;B. 一条直线可以有无数条垂线C.在同一平面内,过射线的端点与该射线垂直的直线只有一条D.过直线外一点并过直线上一点可画一条直线与该直线垂直点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的

6、距离。例:如图所示,找出图中能表示点到直线(或线段)的距离的线段。知识点 6:同位角、内错角、同旁内角直线 AB,CD被直线 EF 所截,形成了 8 个角。同位角:两个角都在两条被截线同一方,并在截线的同侧,这样一BEACDEABDCF对角叫做同位线。内错角:两个角都在两条被截线之间,并且在截线的两侧,这样一对角叫做内错角。同旁内角:两个角都在两条被截线之间,并且在截线的同侧,这样的一对角叫做同旁内角。ADE例:如图,指出图中的同位角、内错角、同旁内角。BC5F练 1:如图所示,在 1,2,3,4,5 和AB 中,D同位角是,BEC内错角是,同旁内角是。练 2:如图,指出下列各组角是哪两条直线

7、被哪一条线所截取而得到的,并说明它们的名称:1 和 9; 1 和 2; 3 和 5; 2 和 7; 5直DC和AB 8; 6 和 7;6 和 8; 8 和 9; 4 和 7。6练习:71、 如图所示, M,N是直线 AB上两点, 1=2, 3=4, 1 与 2, 3 和 4 是对顶角吗?2、“如果 1+2+3=180°,那么 1, 2, 3 互补”这种说法正确吗?3、下列判断中错误的是()A. 一条线段有无数条垂线B.若两条直线相交,则它们互相垂直C.两直线相交所成的四个角中,若有一个角为90°,则这两条直线互相垂直。D.在同一平面内,过线段AB的中点有且只有一条直线与线段

8、AB垂直4、下列选项中, 1 与 2 是同位角的是()5、如图 1,直线 a 和直线 b 相交于点 O, 1=50°,则 2=_.6、如图 2,直线 AB、CD相交于点 O,若 BOD=40°, OA平分 COE,则 AOE=_.87、如图 3,点 A,O,B 在同一条直线上,已知BOC=50°,则 AOC=。8、如图 4,已知 BOC=30°, OD平分 BOC,则 AOD=_.9、如图 5,ABCD,垂足为点 B,EF平分 ABD,则 CBF的度数为 _.10、如图 6,OAOB,若 1=40°,则 2 的度数是()A.20 °B

9、.40°C.50°D.60°11、如图 7,与 1 是内错角的是()A.2B.3C.4D. 59a知识点一:平行线的定义及表示方法b定义:同一平面内,不相交的两条直线叫做平行线。如图,直线 a 与直线 b 互相平行,记作a/b 。注意:两条线段或射线平行是指这两条线段或射线所在的直线互相平行。例:下列说法:在同一平面内,不相交的两条线段平行;在同一平面内,射线 a 与射线 b 没有交点,则 a/b ;若两直线 l,l平行,则 l上的线段 AB与 l 上的射线 OP一定平行; 若直线 m与直线 n 没有交点,则 m/n 。其中,正确的个数是( )A.4B.3C.2D

10、.1知识点二:平行线的画法利用三角尺和直尺过直线外一点画已知直线的平行线口诀:一落,二靠,三推,四画。一落:将三角尺的一边落在已知直线上二靠:将直尺紧靠三角尺的另两边的任意一边;三推:沿直尺移动三角尺,使三角尺一边正好经过已知点;四画:沿过已知点的三角尺的一边画直线。例:读下面的语句,并作图:(1)如图 1,过点 A 作 AF/CE,交 BC于点 F.10(2)如图 2,过点 C 作 CE/AD,交 BA的延长线于点 E。AEDABCBDC知识点三:平行公理及推论1、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。2、平行公理的推论(平行线的传递性) :如果两条直线都与第三条直线平行

11、,那么这两条直线也互相平行,即如果a/b ,c/b ,那么 a/c 。例:同一平面内,已知直线 AB与 EF相交于点 M,AB/CD,那么 EF与 CD具有怎样的位置关系?为什么?例:如图,直线 a/b ,b/c ,c/d ,那么 a/d吗?为什么?abcd例:下列说法中正确的是()111. 一条直线的平行线只有一条;过一点与已知直线平行的直线只有一条;因为 a/b ,c/d ,所以 a/d ;经过直线外一点有且只有一条直线与已知直线平行。A.1 个B.2个C.3个D.4个知识点四:平行线的判定判定方法 1:两条直线被第三条直线所截, 如果同位角相等, 那么这两条直线平行,即同位角相等,两直线

12、平行。符号语言: 1=2, l / l。判定方法 2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,即内错角相等,两直线平行。符号语言:2=3, l / l。判定方法 3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,即同旁内角互补,两直线平行。符号语言:2+4=180°, l /l。例:如图所示:根据下列条件,可推出哪两条直线平行,AD并说O明根据。BCE(1) ABD=CDB ;(2) CBA+BAD=180° ;(3)ABC= DCE12知识点五:平行线判定方法的推论推论:在同一平面内,如果两条直线都垂直与同一条直线,那么这两条直线平

13、行。符号语言: ac,bc, a/b 。知识点六:判断两条直线平行的方法1、定义; 2、如果两条直线都与第三条直线平行,那么这两条直线平行;3、同位角相等,两直线平行; 4、在同一平面内,垂直于同一条直线的两条直线互相平行; 5、内错角相等,两直线平行; 6、同旁内角互补,两直线平行。例:如图,1=A,2 与 B 互余,DEBC于点 F,试确定图中哪些直线平行,并说明理由。AEB1F2CD13练习:1、下列结论正确的个数是()(1)两条不相交的直线叫做平行线; (2)过一点有且只有一条直线与已知直线平行;(3)在同一个平面内,不相交的两条射线是平行线;(4)如果两条直线都与第三条直线平行,那么

14、这两条直线也互相平行。A.1B.2C.3D.42、如图 1,由下列条件可判定哪两条直线平行?(1)1=3;(2) 2=43、对于图 2 中的标记的各角,下列条件能够推理得到a/b 的是()A. 1=2B.2=4C.3=4D.1+4=180°4、如图 3 所示,已知 1=2,则图中互相平行的线段是_.145、如图 4 所示,能判定 EB/AC 的条件是 ( )A. C=ABEB. A=EBD C. C=ABCD. A=ABEDCDCAEABABDBC6、如图 5 所示,下列条件中能判断直线 l /l 的是()A. 1=2 B. 1=5 C. 1+3=180° D. 3=57、

15、如图 6,已知 ACD=70°, ACB=60°, ABC=50°,求证: AB/CDDCAB8、如图 7 所示,若 B=102°, 1=78°,则 AB与 CD平行吗?请说明理由。ABCD15知识点 1:平行线的性质性质 1:两条平行线被第三条直线所截,同位角相等,即两直线平行,同位角相等。几何语言: l /l, 1=2。性质 2:两条平行线被第三条直线所截,内错角相等,即两直线平行,内错角相等。几何语言: l /l, 3=2。性质 3:两条平行线被第三条直线所截,同旁内角互补,即两直线平行,同旁内角相等互补。几何语言: l /l, 4+2=

16、180°。A例:如图所示,如果AB/EF,DE/BC,且 4=115°,那么B你能说出 1、 2、 3 的度数吗?为什么?DEFC16两角间的数量关系两直线间的位置关系知识点 2:命题1、定义:判断一件事情的语句,叫做命题。2、组成:命题由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项。3、表达形式:通常写成“如果 那么 ”的形式,这时“如果”后接的部分是题设,“那么”后接的部分是结论。4、分类:如果题设成立,那么结论一定成立的命题,叫做真命题,反之,命题中题设成立时,不能保证结论一定成立的命题叫做假命题。注意:(1)命题必须是一个完整的句子,是对事情作出

17、肯定或否定的判断。 ( 2)命题一般为陈述句,其他如疑问句、感叹句、祈使句以及表示画图的语句都不是命题。例:指出下列命题的题设和结论,并将其改写为“如果 那么 ”的形式。17(1)同位角相等;(2)等角的余角相等;(3)直角相等;(4)两点确定一条直线知识点 3:定理与证明定理:经过推理证实得到的真命题叫做定理。证明:一个命题的正确性,需要经过推理,才能作出判断,这个推理的过程叫做证明。注意:(1)定理都是真命题,但真命题不一定都是定理。 (2)证明中的每一步都要根据,这些根据可以已知条件,也可以是学过的定义,定理等。例:填写下列证明过程中的推理根据。如图:已知 AC、BD相交于点 O,DF平

18、分 CDO与 AC相交于点 F,BE平分 ABO 与 AC相交于点 E, A=C.求证: 1=2。DC证明: A=C(已知) AB/CD(_)FOE ABO=CDOAB()18又 DF平分 CDO,BE平分 ABO(已知) 1=CDO, 2=ABO(_) 1=2(等量代换)。能力点 1两条平行线间的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离。例:如图所示,直线l /l,点 A,B在直线 l上,点 C,D在直线 l上,若 ABC的面积为 S ,ABD的面积为 S ,则()CDABA.SSB.S =SC.SSD.不确定例:下列命题中:邻补角是互补的角;相等

19、的角是对顶角;同位角相等;两锐角的和不一定是钝角。其中正确的个数是()A. 0B.1C.2D.3练习:ca1、如图,已知直线 a,b 被直线 c 所截,以下结论正确的有 ()。b 1=2 ; 1=3 ; 2=3 ; 3+4=180°19A.1 个B.2个C.3个D.4个2、如图所示,直线a/b , 1=70°,求 2 的度数。cab3、判断下列语句是否是命题, 如果是,请写出它的题设和结论, 并判断真假。(1)内错角相等;(2)对顶角相等;(3)画一个 60°的角4、如图,AB/CD,MN和 PQ分别平分 EMB和 EPD,求证:ENAMBMN/PQ.QCPDF2

20、05、如图 1 所示,直线 AB/CD,直线 EF分别交直线 AB,CD于点 E,F,过点 F 作FGFE,交直线 AB 于点 G,若 1=42°,则 2 的大小是()A.56 °B.48°C.46°D.40°6、如图 2 所示,已知直线a、b 被直线 c 所截, a/b , 1=60°,则 2 的度数为()。A.30°B.60°C.120°D.150°7、如图 3 所示,直线 a直线 c,直线 b直线 c,若 1=70°, 2= ()。A.70°B.90° C.1

21、10 ° D.80 °cEcaAGBabCFDb8、如图 3 所示,已知 AB/CD,AD和 BC相交于点 O, A=50°, AOB=105°,则 C等于()A.20°B.25°C.35°D.45°9、如图 4 所示,直线 a、b 被直线 c 所截, a/b , 1=2,若 3=40°,则 421等于()A.40°B.50°C.70°D.80°10、如图 5,AB/CD,AD平分 BAC,若 BAD=70°,那么 ACD的度数为 ( )A.40°

22、;B.35°C.50°D.45°cABAaBObCDCD知识点 1平移的概念在平面内,把一个图形整体沿某一直线方向移动,会得到一个新的图形,图形的这种移动,叫做平移。22如图,三角形 ABC沿直线 MN方向平移到三角形 A B C ,NA'M点 A与点 A 叫做对应点,点 B,C 与点 B ,C 也分别是对应点;线段 AB与线段 A B 是对应线段,线段 BC,CA与线段AB'C'CBB C ,C A 也分别是对应线段; A与 A 是对应角, B,C与 B , C 也分别是对应角。三角形 ABC平淡方向也可以看成有点 A(或 B,C)到点

23、A (或 B ,C )的方向,平移的距离就是线段 AA ( 或 BB ,CC )的长度注意:(1)平移是一种运动形式,是图形变换的一种情况;( 2)图形的平移有两个要素: 一是图形平移的方向, 二是图形平移的距离,这两个要素是图形平移的依据。( 3)图形的平移是指图形的整体平移( 4)图形的平移实质是将图形上所有点沿同一方向移动相同的距离。例:下列运动不是平移的是() 传送带上物品的运动; 电梯的升降; 火车在平直的铁轨上运行; 门绕着门框旋转;奥运五环旗图案的形成过程;电风扇的转动A. B.C.D.知识点 2平移的性质( 1)平移中的对应点:新图形中的每一点都是由原图形中的某一点移动后得到的

24、,这两个点是对应点。23(2)平移的性质: 因为平移前后两个图形的大小、形状完全相同,所以平移前后的对应线段平行(或在同一直线上)且相等,对应角相等。 图形上的每个点都平移了相同的距离,对应点之间的距离就是平移的距离; 图形平移前后对应点所连的线段平行(或在同一直线上)且相等。例:如图所示,图中有两个梯形 ABCD和 EFGH,其中梯形 EFGH是由梯形 ABCD向右平移 2.1cm 后得到的,问:(1)线段 AE、BF、CG、DH有什么数量关系?AEBFDH( 2) AB 与 EF、BC与 FG、CD与 GH、AD与 EH之间有什么位CG置关系?( 3) BAD与 FEH、 ABC与 EFG

25、、 BCD与 FGH、 ADC与 EHG之间有什么数量关系?知识点 3平移作图平移作图步骤:一找:找出平移的方向和距离;二定:对照具体图形,确定关键点;三移:按照既定方向和距离平移图形中的关键点;四连:顺次连接关键点的对应点,得到平移后的图形。24例:如图所示,平移三角形ABC,使点 A移动到 A ,画出平移后的三角形A B C。A'ABC练习:1、下列现象不属于平移的是()A. 小华乘电梯从一楼到三楼B.足球在操场上沿直线滚动C.一个铁球从高处自由下落D.小朋友坐滑梯下滑2、如图,三角形 ABE沿着 BC方向平移到三角形FCD的位置,BC若 AB=4cm,AE=3cm,BE=2cm,

26、BC=5cm,则 CF、CD、DF、EF的长分别是多少?AEFD3 下列运动:海浪的运动;屏幕上一串移动的字幕;被投掷出去的铅球运动;沿圆形跑道跑步的运动员,其中属于平移的有_4、如图所示,三角形 FDE经过怎样的平移可以得到三角形ABC?AF25BDCE()A.沿 EC的方向移动 DB长B.沿 BD的方向移动 BD长C.沿 EC的方向移动 CD长D.沿 BD的方向移动 DC长5、下列说法中,不正确的是()A. 图形平移前后,对应线段、对应角相等B. 图形平移后,连接对应点的线段平行(或在同一条直线上)且相等C.图形平移过程中,对应线段一定平移D.图形不论平移到何处,它与原图形的面积总是相等的

27、AD6、如图所示,将周长为 8 的 ABC沿 BC方向平移 1 个单位得到BECFDEF,则四边形 ABFD的周长为()A.6B.8C.10D.127、如图所示,将 ABC沿直线 AB向右平移后到达 BDE的位CE置,若 CAB=50°,ABC=100°,则 CBE的度数为 _ABD26复习专题一:相交线两直线相交成四个角:位置上来看,其中两对角的两边互为反向延长线,这样两对角叫对顶角;还有四对角,每对角都有一条公共边,另一对边互为反向延长线,这样四对角称为邻补角。从大小来看对顶角相等,邻补角互补。垂直是相交的特殊情况,当两直线相交成 90°角时,这两条直线就互相

28、垂直了。可以写成 AOB=90° AOOB,或 AOOB, AOB=90°。例:如图,已知直线 AB与 CD相交于点 O,EOCD于 O,OF平分 AOD且 BOE=50°,求 COF的度数。FDABOEC27复习专题二:平行线的判定判断两直线平行目前有6 种方法:1、是利用平行的定义(在同一个平面内,不相交的两条直线叫平行线),但是利用平行的定义只能定性地判断,不能定量的判断;2、是利用“平行于同一条直线的两条直线互相平行”,是讨论三条直线互相平行时常用的方法;3、利用同位角相等来证明两直线平行;4、利用“在同一平面内,垂直于同一条直线的两条直线平行”,使用时必

29、然出现两个垂直;5、利用内错角相等来证明两直线平行;6、利用同旁内角互补来证明两直线平行。1、2、 4 的方法使用有局限性,一般都是根据角度关系来证明两直线平行。例:如图, B=C, DAC=B+C,AE平分 DAC,试说明 AE/BC。DAEBC28复习专题三:平行线的性质两直线平行,同位角相等、内错角相等、同旁内角互补,因此平行线性质最直接的运用是:已知两直线平行,可以推断出角相等或互补。平行线的性质是证明不同顶点的两个角相等的常用工具。例:已知,如图 AB/CD,OE平分 AOC,OEOF,点 O为垂足,FCDC=50°,求 AOF的度数。EAOB复习专题四:平移学习了平移的概

30、念,平移的基本特征以及运用平移作图。决定平移的因素是平移的方向和平移的距离,平移不改变图形的形状和大小,平移前后的对应点的连线段以及对应线段平行(或在同条直线上)且相等。例:如图,将字母k 按箭头所指方向平移1.8cm,作出平移后的图形。29复习专题五:方程思想方程思想是指从分析问题的数量关系入手,将问题中的已知量和未知量之间的数量关系通过适当设元建立方程,然后通过解方程使问题得到解决的思维方式。例:如图, FC/AB/DE ,: D: B=2:3:4,求、 D、 B 的度数。FCABDE复习专题六:分类讨论思想当被研究的对象包含多种可能情况,导致我们不能对它们一概而论,必须按照出现的所有情况进行分类讨论,得出各种情况下相应的结论。这就是分类讨论30思想。分类讨论思想能使复杂、繁琐的问题条理化、简单化。例:在 ABC和 DEF中, DE/AB,EF/BC,请你尝试探索 ABC和 DEF的关系。复习专题七:转化思想在几何推理中,已知条件和要求的结论之间常常需要转换,转化是常用的推理形式,必要时还需要添加辅助线进行转化。例:如图, AB/CD, 1=B, 2=D,试说明 BEDE。BAEDC31复习专题八:数形结合思想平行线的判定是由角与角的数量关系到“形”的判定,而性质则

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论