Maxwell与Simplorer联合仿真_第1页
Maxwell与Simplorer联合仿真_第2页
Maxwell与Simplorer联合仿真_第3页
Maxwell与Simplorer联合仿真_第4页
Maxwell与Simplorer联合仿真_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、三相鼠笼式异步电动机的协同仿真模型实验分析本文所采用的电机是参照Ansofi 12在工程电磁场中的应用一书所给的使 用RMxprt输入机械参数所生成的三相鼠笼式异步电动机,并且由RMxpri的电机 模型直接导出2D模型。由于个人需要,对电机的参数有一定的修改,但是使用 Y160M-4的电机并不影响联合仿真的过程与结果。1.1 Maxwell与Simplorer联合仿真的设置1.1.1 Maxwell端的设置在Maxwell 2D模型中进行一下几步设置:第一步,设置Maxwell和Simplorer端口连接功能。右键单击Model项,选择 Set Symmetry Multiplier项,如图1

2、.1所示,单击后弹出图1.2的对话框。Q A心 WMi CaOMYgUaeKN 8/r,.53 8 33工 5043 ": C3OCW W11Mte工,337 小冏 V»O<w McxM.r MvmUI2D FoeH"p一一i O Q M > 3J i B M II» P IIi :! Ho. jd Ij j I. II W I» 际 3 向 3 II : 学 5 / <【91叁。I S 方S;,:;、XipS«t,EC«try“9id*._Set WlCefs.,m!U9 ffrwjiu*. Xtl r、

3、-s «>u _ r.CdXrMVW3”:,图1.1查找过程示意图Preserve Transient SolutionMaterial Thr-asholds | Symmetry Multiplier | Model DepthAlvanced Product CouplingIBackground Enable tr ansi ent- tr ansi ent LiiJk with Sim|确定 | 取消 I图1.2设计设置对话框在对话框中,选择 Advanced Product Coupling 项,勾选其下的 Enable tr-tr link with Sim。至此

4、,完成第一步操作。第二步,2D模型的激励源设置。单击Excitation项的加号,显示Phase A、Phase B、Phase C各项。双击Phase A项,弹出如图1.3所示的对话框。WindingGeneral | De£a-ults |Maine;IPhaseA-|确定 | 取消 I图L3 A相激励源设置在上图的对话框中,将激励源的Type项设置为External,并勾选其后的 Slraiidcr,并且设置初始电流 Initial Current 项为 0。Number of parallel branch 项按 照电机的设置要求,其值为1。参数设置完成后,点击确定退出。需要

5、说明的一点是,建议在设置Maxwell与Simplorcr连接功能即第一步之前, 记录电压激励源下的电阻和电感。事实上,这里的电组和电感就是Maxwell 2D 计算出的电机的定于电阻与定于电感。这两个数据在外电路的连接中会使用到, 在后面会详细说明。至此,Maxwell端的设置完毕。1.1.251 mpk>rer 端的设置Simplorcr端的设置,主要是对电机外电路的设置,具体的电路会在空载实验 和额定负载实验中详细给出,这里不再赘述。1.1.252 仿真时间的设置联合仿真时,Maxwell和Simplorcr同时运行,程序按照各自设定的时间和步 长运行。其中Simplorcr是主动

6、者,Maxwell是被动者,当Maxwell运行完毕但 Simplorcr尚在运行时,Maxwell将重新运行,与Simplorcr进行数据交换。在实践 中,发现仿真时间的设置对结果有一定的影响。例如,将二者仿真时间和步长设 置相同的话,仿真的结果就不正确。在反复试验的前提下,得到如下经验:将 Simplorcr的时间和步长设置长一些,将Maxwell的时间和步长设置短一些,这样 实验的结杲就接近正确值。1.1.253 2D模型的导入一 5rMp1 -女,J « "1 73d«w Scftecratk100 不又 |-'5«Tpkf«r

7、 C*-C4« ; T>l» 'AVxScw11 海zJ - a | v:9, t: X » JD F I1" IJ 2 d + | 5 O S O1 n. 1 % 1- /岫GZP MJ 加IJUd Zni4rkimoatx SD3 HU.Add MttC'd CofipCfMnt.M»n«v*(8pbeTrerfH Gi.eJ.&c.a (71 «v”q,Add 口卜如0<1 Q>“ri: C<ecofC.QX> C%rumc ConpciTEN-0士 7b,6n寄财

8、aitrieDwi9n £rcp«ftka.Add Pt«p<t A* CEpc,r".Add MeCerigl C»vbE.Add Xf .k Co/rsxjw Orueic i,mmce”31 Dynafvk dQnt»,”.之 49 03吟.Add g, Space.Q Ur<luu!£ £7”.,AddConorwrc.U&xc« NMicx heHi<Md W*,e(EpB,r*.Add MF$Add RDS C«ripest KTA.0力力),:4.grMl

9、"X Q«”囱1-4 导入步骤点击以后,会弹出图1.5所示的对话框。图1.5 2D导入对话框其中File项是指待添加Maxwell 2D模型的位置,下面的选项是选择2D模型还是3D模型,Soknion项是选择对应的TR。1.2空裁实验协同仿真分析1.2.1 Simplorer 电路设置空载实验的电路图如图1.6所示。2D模型的导入Simplorcr中的步骤,如图1.4所示。图1.6空载实验电路设置图外电路的确定主要是通过以下几个步骤:电源电压不能直接与电机的三相输入端口直接相连,通过查阅资料得知, 需要在线路上添加电阻或电感器件。实验初始,加入小电阻,相当于电源的内阻, 在

10、外电路设置的基础上可以运行。三相输出连接在一起,接地与不接地不影响实验的结果,这个是通过对比 验证得出的结论。MotionSctiipl端口,是在2D模型中Model项的修饰部分,在生成2D模型 时系统自动设定。经过对比实验,得出如下结论:如果MolionSctupl输入端口接 入转速源,改变转速源的参数值不影响电机的输出变化;如果MotionSetup 1输入 端口接地,电机的输出结果与加入转速源的输出结果是一致的,因此, ModonScmpl输入端口不管按什么类型的源,均不影响电机的输出结果。但是在 2D模型中改变MotionSctupl的话,输出将随着输入的不同转速发生改变,于是 就知道

11、MotionSctiipl输入端口取决于2D模型中的设定,跟Simpler,中的连接方 式没有任何关系。在此基础上,选定Simplorcr中MctionSctupl输入端口接地。对于MoiionSciupLout的设定也是通过对比实验来确定:在其他外电路连接完全相同的条件下,输出端口接地和接转动惯量的电机定 于电流如图L7和1.8所示:图1.7 输出端口接地的定亍电流图motor current80.0060.00 T40.00 T20.DD T-20,00 7-40.00o5)Ov) Tmo|s加8 . 000图1.8输出端口接转动惯量的定于电流图0.00 T160通过对比可以看出,接地的定

12、于电流稳定的要快,而接转动惯量的定于电流 稳定的要慢,但是和原来的导入RMxpri模型实验和自带电机模型试验的定子电 流图保持一致。也就是说,加入转动惯量以后,电机会仿真起动过程,这就是先 前的实验中为什么要加入转动惯量MASS_ROT的原因了。本实验最关键的一点就是对电阻和电感数值的选取。a、先前在线路中只加入一小电阻,考虑作为电源内阻的功能,但是出来的定于电流相当不理想,如图1.9所示。图1.9单纯加入小电阻的定亍电流图从上图看出,虽然三相电流最终达到稳定,但是明显不符合要求:A相电流 太大,B、C相电流相对较小,而且还是负值,这与理想中的空载电流相差很大。段如果加入小电阻和小电感,电流的

13、波形与图L9相差不大。c、在前两组实验中,得到的结论是线路的电阻和电感不能随意设定,必须 设置合适的参数才能得到正确的结杲,在此基础上,考虑将电阻值设定为电机的 定于电阻值,将电感值设定为定干的漏感。执行新的实验方案,得到了正确的波 形。总结以上几点的分析,并结合一定数量的实验,得出图L6电机的空载实验 原理图:A、B、C为三相电压,有效值为220V,相位依次相差120°; RI、R2、R3为 电机的定于电阻,值为0.921989C; LI、L2、L3为定子侧的漏电感,值为 0.00777424H;电机的三相输入接电源,三相输出连接在一起,MotionSciupl输入 端口接地,输出

14、端口接电机的转动惯量,值为0.0968218 kg肝。至此,线路连接完毕。6.2.2实验结果及分析1、定于相电流波形如图1.1。所示。motor currentkongzai 当图1.10空载实验定于相电流波形从图中可以看出,电机在0.8s左右完成起动过程,此后稳定在空载状态,空 载电流的有效值为2.43A。与RMxprt的空载电流2.40252A相比,差距不大。2、电机转速图如图1.11所示图1.11 电机的转速图电机开始启动,转速逐渐上升,最终稳定在1500rpm。1.3突加突卸负载的协同仿真1.3.1 实验原理图实验原理如图1.12所示。图1.12 突加突卸负载实验原理囱实验中,()1s

15、时电机完成起动并稳定在空载状态;在2s时加入负载,负载 转矩为24 N-m, 12s电机处于负载状态;在3s时卸去负载,电机处于空载状 态,仿真时间为4s。6.3.2实验结果及分析1、定于相电流图如图1.13所示0 1.13突加突卸实险定于相电流图从图中可以看出,在。2s时电机完成起动并稳定在空载状态;在2s时加入 负载时,定于电流开始上升,最终在稳定的负载状态;在3s时卸去负载,电流开始下降,最终回到空载状态。2、电机转速如图L14所示motor speedtujtaluxie 冬1550.00 -Cur*olftlo1300 00 -FEALOW6GA1050.00 -800 00 -550.00 -3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论