温室大棚研制报告_第1页
温室大棚研制报告_第2页
温室大棚研制报告_第3页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、基于太阳能供电的温室环境智能监控系统研制报告1. 系统概述随着能源的日益短缺, 利用太阳能供电系统的温室大棚智能控制系统越来越 受欢迎。温室大棚又称暖房,具有透光、保温的作用,是栽培农作物的设施。多 用于低温季节喜温蔬菜、花卉、林木等植物栽培或育苗等。温室的种类多,依不 同的屋架材料、 采光材料、 外形及加温条件等又可分为很多种类。 温室结构应密 封保温,但又需要通风降温。 现代化温室中用电脑自动控制技术来创造植物所需 的最佳环境条件,使其具有控制温度、湿度、 CO2 浓度等条件的功能。本装置采用太阳能光伏系统进行供电, 使用转换效率较高的多晶硅太阳能电 池板进行能源转化, 所转化的电能储存在

2、蓄电池中, 并为整个温室环境检测装置 提供电能。装置主要针对温室大棚环境中的温度、湿度、以及 CO2 浓度这些对 农作物的生长起着重要作用的环境参数进行实时测量, 并将采集的数据进行存储 和显示,通过控制输出启动各种设备制造出适宜农作物生长的温室环境。 硬件电 路核心部分采用 STC 公司生产的具有高速,低功耗的、自带 A/D 转换的 STC12C5A60S2单片机,传感器选择成本较低、有一定集成度、应用比较广泛、 精度较高、可靠性良好的产品。本次课题主要设计利用实现温度、湿度以及 CO2 浓度实时自动监测,实现, 最大程度地提高农作物的产量与质量。2. 系统总体组成及总体设计方案温室环境智能

3、监控系统由检测系统、 集中控制系统和太阳能供电系统共同组 成。采用太阳能供电技术,利用 MPPT 方法进行太阳最大功率点跟踪,从而实 先太阳能最大化利用。 通过太阳能电池板将太阳能转化为所需的电能, 通过稳压 电源模块将输出电源转化为各个负载所需的电源电压, 从而给各个电路供电。 集 中控制系统电路部分包括:电源模块、通讯模块、时钟电路模块、人机对话接口 模块以及 CPU 接口电路模块。检测系统电路部分包括:电源模块、传感器电路 模块、单片机最小系统模块、 输出控制电路模块。 检测系统将采集到的数据传输 到单片机中之后将信息发送给控制系统, 控制系统读取各种数据, 进行处理并作 出适当的应答。

4、 其核心是利用单片机进行控制, 利用太阳能光伏系统供电、 对温 室大棚内温度、湿度、 CO2 浓度的实时监测以及采集数据的人机交互,具有实时 检测、自动监控功能,实现的温室大棚技术的自动化、智能化、无线化。其原理 框图如图 2.1 所示。在设计总体方案时,首先设计太阳能供电系统,其主要包括太阳能电池板选 择、MPPT的实现、蓄电池充放电监控以及电压转换 4个部分。利用BUCK变 换器来实现MPPT,通过调节BUCK变换器的PWM占空比输出,使负载等效阻 抗跟随太阳能光伏组件阵列的输出阻抗, 从而使光伏阵列在任何条件下均可获得 最大功率输出。检测部分主要是传感器的选择,测温度、湿度设备选择DHT

5、11温湿度数字传感器,CO2浓度的测定可采用MG811CO2浓度传感器。升温设备,白天可采用太阳能加热器加热,在太阳不足时,采取电加热器, 由蓄电池组供电。降温设备采用湿帘/风机,当实际湿度低于所需要湿度时,通 过控制安装在大棚顶端的喷嘴来实现。CO2浓度的控制,可通过控制 CO2发生 器的开关来提高;当浓度过高时,通过打开通风机即可。图2.1系统结构图3检测系统硬件电路设计3.1传感器的选择在设计该温室大棚环境自动监控系统时,其检测系统中要采用传感器的特点 要具有微型化、数字化、智能化、多功能化、系统化、网络化等特点。所以本设 计中检测温湿度传感器使用是 DHT11数字式温度传感器;而检测C

6、02气体传感 器使用MG811CO2气体传感器。3.1.1DHT11数字式温湿度传感器DHT11数字温湿度传感器是一款含有已校准数字信号输出的温湿度复合传 感器。它应用专用的数字模块采集技术和温湿度传感技术,确保产品具有极的可靠性与卓越的长期稳定性。传感器包括一个电阻式感湿元件和一个NTC测温元件,并与一个高性能8位单片机相连接。因此该产品具有品质卓越、超快响应、 抗干扰能力强、性价比极高等优点。每个 DHT11传感器都在极为精确的湿度校 验室中进行校准。校准系数以程序的形式储存在 OTP内存中,传感器内部在检 测信号的处理过程中要调用这些校准系数。 单线制串行接口,使系统集成变得简 易快捷。

7、超小的体积、极低的功耗,信号传输距离可达20米以上,使其成为各类应用甚至最为苛刻的应用场合的最佳选择。 产品为4针单排引脚圭寸装。连接 方便,特殊封装形式可根据用户需求而提供。其实物图如图3.1所示。图3.1 DHT11数字式温湿度传感器3.1.2 MG811CQ气体传感器MG811型C02传感器的特点是对C02有良好的灵敏度和选择性,受温湿度的 变化影响较小,具有快速响应恢复特性,带有温度补偿输出,标称温度环境下Tcm 输出为VCC/2电压,当环境温度变化时,输出电压信号变化,温度变化量转换为 对应的电压输出变化量,从而通过程序补偿该温度变化量,控制探头更有效的检测。而且还有良好的稳定性与再

8、现性,其主要应用领域有,空气质量控制系统、 发酵过程控制、温室CO2浓度检测等,其中在温室CO2浓度检测中广为应用。该传感器由固体电解质层(1),金电极(2),铂引线(3),加热器(4), 陶瓷管(5),100目双层不锈钢网(6),镀镍铜卡环(7),胶木基座(8), 针状镀镍铜管脚(9)组成。其组成结构图及实物图如图3.2所示。图3.2 MG811结构图及实物图233.2传感器电路设计3.2.1温湿度传感器电路设计本装置采用DHT11传感器的供电电压为直流 3.3V5.5V,输出单总线数字 信号模式,其测量范围在湿度为 20%90%RH内,温度为050C,可以完全互 换。其电路原理图如图3.3

9、所示。23图3.3 DHT11数字温湿度传感器原理图VCC本设计将传感器(CER)的2脚DATA接到单片机P1.5I/0 口,同时在1脚VCC电源端连接一个4.7k的电阻与2引脚相连,由于温室大棚内不可能只放一 个DHT11传感器,所以在其电路外围引出两个接线端子(XIN7、XIN8 ),用于在大棚各个地方安放传感器。当温室内的温湿度不符合所设定的参数值时,传感器动作,将检测到的信号通过引脚 2 (DATA )传送到单片机,经过A/D转换 形成数字信号输送到CPU进行数据分析、处理然后发出相应的命令,完成温室 大棚内的温湿度实时监测。3.2.2 CQ浓度传感器电路设计本设计采用CO2浓度MG8

10、11传感器对温室内CO2进行检测,在CO2浓度传 感器外围电路设计中,输出为差动输出,有可能产生负电压。放大器放大环节对 于负电压的放大效应无法被 MCU识别,所以利用TL082运算放大器对检测信号 进行放大,它具有输出为差动输出,有可能产生负电压的通用J-FET双运算放大 器。TL431元件是可控精密稳压源,所以选择 TL431作为本次设计中的稳压元34件。则MG811CO2浓度传感器电路原理图如图3.4所示。图3.4 MG811CQ浓度传感器电路原理图当温室大棚内的CO2浓度不符合所设定的标准参数时,MG811传感器动作, 把检测到的温室内的CO2浓度情况经过TPL082放大器将信号放大送

11、入单片机进 行数据处理,其中MG811传感器所需的工作电压为+6V,而放大器所需要的工 作电源为+5V,所以使用TL431可控精密稳压源进行稳压,从而完成温室大棚内 的CO2浓度的检测。3.3稳压电源电路设计由于考虑到CO2传感器所需电源为+6V,所以该设计中采用LM2596降压开关稳压芯片将+12V降至+6V给C02传感器供电LM2596具有3.3V、5V、12V的固定电压输出和可调电压输出;可调电压 输出范围1.2V37V±4%;输出线性好且负载可调节;功耗小,效率高;低功耗; 具有TTL断电能力,具有完善的保护电路、电流限制、热关断等电路功能,比 较符合本次设计的需求,在基于

12、LM2596芯片的+12V降压稳压电源电路原理图 如图3.5所示。1 2VV1C901220 UF+121104C902IN VF1.2OFF/O1GNDOUTLM2596ITDT1100UH104C903V6+ C904220UFR2071.6kR2O85k图3.5降压稳压电源电路在该电路图中,其输出电压是可调的,通过调节电阻R207与R208比值来控制输出电压。由于该设计中其他部分电路的供电电源为+5V,所以采用 AMS1117-5.0正向低压降稳压器,它的稳压调整管是由一个 PNP驱动和NPN管 组成的。为了确保AMS1117-5.0的稳定性,对可调电压版本,输出需要连接一 个至少是22

13、 F的钽电容。本设计采用可调版本。其原理图如图 3.6所示。3CVT3AMS1117-5.0VD3V2二二 C905+ C906|104J106 rVCC1+ C907104图3.6 AMS1117-5.0正向低压降稳压电路图当+6V直流电压输送过来经过 AMS1117-5.0降压模块将其降为+5V电压为 其他电路设备进行供电。3.4输出控制电路的设计本系统中不但要完成对温室大棚内部温湿度及 CO2浓度等相关参数的采集 分析,还要实现对大棚的智能化控制,即 CPU分析处理后的输出控制部分,包 括对加热器、湿帘/风机、室内喷雾设备、通风设备、 CO2发生器、遮阳设备以及补光设备等。要实现单片机对

14、这些输出设备的控制就必须引入继电器作为开关 来控制这些输出的外围电路。在本系统中我们采用8050NPN型晶体三极管,作为电磁继电器开关电路, 电磁继电器采用JQC-3F(T37)电磁继电器作为输出电路控制开关,其实物图如图 3.7所示。图3.7 JQC-3F(T37)电磁继电器D为防止瞬间断电电流的回流效应,我们在电磁继电器线圈的两端并联 1个二 极管4148。这样由总线的+12V、继电器线圈、8050三极管、地(GND )以及防 止回流的4148二极管共同构成了输出控制电路部分电路图如图 3.8所示。XIN521图3.8输出控制电路原理图图3.8当JJ1端由单片机输出高电平时,三极管导通,整

15、个输出控制电路导 通,线圈带电,电磁继电器触点吸合,外围电路闭合导通,从而实现外围电路所 连接的各种大型设备开关量控制。4. B集中控制系统硬件电路设计4.1单片机最小系统的设计STC12C5A60S2单片机自带时钟、机器周期,速度快,是咼速、低功耗、超强干扰的新一代单片机,内部集成了复位电路,高速A/D转换,看门狗电路,双串口,全双工异步串行口,性价比较高。故在此设计中选用这款芯片作为核心3CPU对整体系统进行控制。单片机最小系统包括晶体振荡电路、 复位开关电路等。本系统中所选用的晶 振大小为11.059MHz,其一个机器周期为1.09us,足以满足本设计的运算速度。单片机复位电路是单片机最

16、小系统中不可缺少的一部分。单片机复位系统设计的好坏直接影响到整个系统工作的可靠性。由于实验室与实际应用环境存在很大的 差异,有时在实验室调试成功后,在实际现场却出现了 “死机、程序飞走”等现 象,这主要是单片机的复位电路设计不可靠所引起的。在时钟电路工作后,只要在单片机RESET引脚上出现24个时钟振荡脉冲(两个机器周期)以上的高电平, 单片机就能实现复位。本设计采用上电复位电路,可以很好的利用电容器充电来 实现复位。当加电时,电容 C10充电,电路有电流流过,构成回路,在电阻 R25 上产生压降,RESET引脚为高电平;当电容 C10充满电后,电路相当于断开, RESET的电位与地相同,复位

17、结束。其最新系统原理图如图4.1所示。VCCRRsxTDRSTP30/RXDP43/TXD2P31/TXDP34/T0i/T1P33/INT1K sP32/INT0VCC4|D333323?302928P04P05P06P07P46P41P45 P44/NAP27P26P25PP041-78 965 1X4 2X4.2时钟电路设计PDnl1234TXD *-LS1LF1Rs 2kI IRf 2kVCC5MledTEDVCC图4.1单片机最小系统原理图PPPPPPTitleSizeNumberRevisio nA4Date:File:3-Mar-2015C:Docu ments and Sett

18、 in gsAdmi ni stratoSheet of桌面我1的文件毕业设计太阳能L500时钟电路是在电脑启动时提供初始化时钟信号, 并在主板正常运行时及时向 CPU、芯片组、各级总线(包括 CPU总线、AGP总线、PCI总线等)及各种接 口提供基本时钟信号。本设计采用PCF8563时钟芯片,它是一款极低功耗CMOS实时时钟/日历芯 片,具有报警功能、定时器功能、时钟输出功能以及中断输出功能,能完成各种 复杂定时服务,甚至可以为单片机提供看门狗功能。 它提供一个可编程的时钟输 出,一个中断输出和一个掉电检测器,所有的地址和数据都通过I2C总线接口串 行传递。最大总线速度为400Kbits/s

19、,每次读写数据后,内嵌的字地址寄存器会 自动递增。其时钟电路如图4.2所示。3. 6VVCCC 1 0 10uf图4.2时钟电路图R STR 2 5 C 91 0 k3 9 p JT14.3通信接口电路设计C14 11.059X23 9p 在该系统上包含两种通讯路径。一条由通讯芯片通过光电耦合器和数据线实现远程PC机的实时监测与控制。由于数据线暴露于室外,考虑到雷击等自然因 素影响我们采用光耦元件对主线与 PC机通讯间进行隔离,防止雷击电压经由通 讯线路击坏PC机,这种通信中,光耦元件采用 6N137光耦合器。它是一款用于单通道高速光 耦合器,其内部有一个850nm波长AlGaAs LED和一

20、个集成检测器组成,其检 测器有一个光敏二极管、高增益线性运放及肖特基钳位的集电极开路的三极管组 成。该光耦元件在接收到信号后,发光二极管发光,经片内光通道传到光敏二极 管,反向偏置的光敏管光照后导通,经电流-电压转换后送到与门的一个输入端, 与门的另一个输入为使能端,当使能端为高时,与门输出高电平,经输出三极管 反向后光电隔离器输出低电平。当输入信号电流小于触发阈值或使能端为低时,输出高电平,但这个逻辑高是集电极开路的,可针对接收电路加上拉电阻或电压2调整电路。其通信电路如图4.3所示。3图4.3 PC机相连通讯电路图另一条经由通讯芯片通过主线与各检测系统相连,实现控制系统与检测系统之间的实时

21、通讯,该通信接口采用了 RS485总线做现场总线,可通过RS485总线 与检测系统通讯,来获得室内外温度、湿度及室外光照、雨量、风速、风向等参 量,还可与其他控制器及上位机进行通讯, 构成更大范围的温室环境自动控制系 统。RS485接口信号的电平比RS232低,可以保护接口电路的芯片;其通信电路 图如图4.4所示。1 2X inDate:2-Mar-2 01 5图 4 4 RS485 通信接 口电路图 C Usersh pDesk top 太阳能-副本M5 5D0aWdibBy: 3R ev isioSh eet o f这两个串口通信电路实现了检测系统与控制系统对温室大棚内部环境的实 时监测以

22、及控制系统与PC机之间的信息数据采集、处理和显示等功能4.4人机对话接口电路设计本设计中人机对话接口电路部分采用19264LCD液晶显示屏对相关参数进行可视化实时监测以及矩阵式4 *5键盘。19264LCD液晶显示屏内置2M位中文字型ROM,总共提供8192个中文字 型(16*16点阵);16K位半宽字型ROM,总共提供126个符号字型(16*8点阵); 64*16位字型产生RAM,另外绘图显示画面提供一个 64*256点的 绘图区域, 可以和文字画面混合显示。提供多功能指令:画面清除、光标归位、显示开/关、光标显示/隐藏、显示字符闪烁、光标移位、显示移位、直画面旋转、反白显示、 待命模式等。

23、其实物图如图4.5所示。123图4.5 19264液晶显示屏报警电路采用一个非门的作用是为了防止系统上电时, 峰鸣器发出声音,因 为系统复位以后,I/O 口输出的是高电平。其显示、键盘以及报警原理图如图4.6 所示。DDGVCCVinA0R/WENDB0DB1DB2DB3DB4DB5DB6DB7CS1RSTCS2CS3VoutLED+RP14A05R/W6EN7D08D19D210D311D412D513D614D715CS116ST17CS218CS31920 ,1192 64T XAKEY10k10k10k10k10kVCCRL 10NAND1KVCC图4.6显示、键盘以及报警原理图5.

24、太阳能供电系统硬件电路设计C:Docu ments ancNiSettingsAdministratoNumber2Title2-Mar-2015Size5.1太阳能板及蓄电池的选择Date:File:Revision3ASheet of桌面我的n文件资料kn太阳能太阳能M550 0.ddb目前,有许多材料可以用来做太阳能光伏电池的半导体层,但是能产生高能Date:2-Apr-2015Sheet ofFile:C:Docu ments and SettingsAdm inistrato 桌面D我的i文件毕业设计太阳能电路图M550 0.ddb量转换效率的光伏材料并不多。全世界应用和研究的光伏材

25、料主要包括单晶硅、 多晶硅、砷化镓晶体材料以及非晶硅、磅化锡等薄膜材料。而广泛应用的主要是 单晶硅,其次是多晶硅,非晶硅使用比较少。近年来某些性能更加先进的太阳电 池目前正在研制开发中。本设计选用的光电转化电池为多晶硅太阳能电池,其实物图如图5.1所示。多晶太阳能电池板是由多晶硅高效太阳能电池片、EVA胶膜低钢化玻璃、轻质电镀金组成。图5.1多晶硅太阳能电池板图5.2铅酸蓄电池目前我国还没有专门用于可再生能源发电系统的蓄电池, 最常使用的有铅酸 蓄电池、碱性电池和胶体电池等。因此本系统选择铅酸蓄电池作为储能装置。 其 实物图如图5.2所示。5.2常见MPPT空制算法分析及选择目前太阳能电池的转

26、换效率都不高,为了能充分利用太阳能许多 MPPT的 方法被提出,如恒定电压控制法(CVT),扰动观测法(P&O),电导增量法(INC) 等等。本文所研究的系统主电路采用 Buck变换器来实现MPPT,用于负载端+12V 蓄电池的充电,如图5.3所示DpvQ"L£TpvDCpv图5.3最大功率点跟踪系统等效电路通过调节占空比,当阻抗变换满足Req= Rs时,太阳能电池输出功率最大:PmVs24?RS(5-1)在最大功率点时,对应的输出电压与电流分别为Vm=Vs 12,Im= Vs /(2Rs)。5.3充放电控制系统电路设计本设计中,采用具有PWM降压模式铅酸电池充电管

27、理集成电路 CN3717芯片 进行充电控制,该芯片具有涓流,恒流,过充电和浮充电模式,非常适合铅酸电 池的充电。在过充电和浮充电模式,充电电压由外部电阻分压网络设置;在恒流充电模式,充电电流通过一个外部电阻设置;对深度放电的电池进行涓流充电; 在过充电阶段,充电电流逐渐减小,当充电电流降低到外部电阻所设置的值时, CN3717进入浮充电状态。在浮充电状态,如果电池电压下降到所设置的过充电 电压的81.8%时,自动开始新的充电周期。当输入电源掉电或者输入电压低于电 池电压时,CN3717自动进入低功耗的睡眠模式。其充放电原理图如图 5.4所示。图5.4充放电电路原理图在图5.4充放电电路中,其工

28、作过程是当太阳能能电池板两端的电压大于蓄电池两端的电压时,MOS管M1打开对蓄电池进行充电,当太阳能电池板两端电压小于蓄电池两端的电压时,MOS管M1关断,停止对蓄电池进行充电 CN3717自动进入睡眠状态,内部电路被关断;当蓄电池电压大于10.8V时,MOS管M2打开,对系统各个负载进行放电,当蓄电池电压小于10.8V时,MOS管M2关断,停止对各个负载进行供电。NumberRevisionTitle 5.4电压转换电路设计SBze7-Apr-2015C:Documents and SettingsAdmSheet of桌面D我的件毕业跻太阳能解图Date:File:23456541 DC-

29、DC电压转换由于太阳能蓄电池的充放电电路输出的电压不具有稳定的,所以要进行电压转换,以便输出稳定的电压供系统使用。本设计将输出的电压+12V利用DC-DC进行升压至+24V,在利用DC-DC将+24V降压至稳定的+12V、+6V、+5V 以便各个系统电路使用。在升压稳压电路中,采用LM2577集成电路进行升压。其电路原理图如图5.5所示。图5.5 LM2577升压稳压电路图在该升压电路中,其输出电压可以根据电阻R1和可变电阻R来确定。电阻Ri、R和Vo的关系式,式(5-14)中1.23V为片内基准电压:V。1.23 31R1R(5-2)当通过调节滑动变阻器R时,来控制输出的电压5.4.2 DC

30、-AC电压转换因为太阳能供电输出的电压为+12V直流电压,但是在温室大棚内,一些大 型设备需要220V交流电压,所以设计一个直流变交流(DC-AC )的电压转换电 路,从未驱动该温室大棚内的各种设备。本设计采用频率固定的脉冲宽度控制器 TL494进行逆变电路控制该逆变电 路采用频率固定的脉冲宽度控制器 TL494进行逆变电路控制,该逆变电路输出 为400W/220V稳压交流电,为各个温室内各个大型设计进行供电,本电路采用 TL494组成的400W大功率稳压逆变器。它激式变换部分采用TL494、VT1、VT2、 VD3、VD4构成灌电流驱动电路,驱动两路两只60V/30A的MOS开关。如需要 提

31、高输出功率,每路可采用34只开关管并联应用,电路不变,该逆变器采用容 量为400VA的工频变压器,铁芯采用 45*60mm2的硅钢片。初级绕组采用直径 1.2mm的漆包线,两根并绕2*20匝。次级取样绕组采用0.41mm漆包线绕36 匝,123456中心抽头。次级绕组按230V计算,采用0.8mm漆包线绕400匝。开关管VT4VT6可用60V/30A任何型号的N沟道MOS管。VD7可用1N400X系列普通二极管图5.5 TL494逆变电路图电路原理图如图5.6所示。Revision太阳能供电系统其程序流程图如图6.1所示。Date:File:7-Apr-2015C:Docu ments and

32、 SettingsAdninistrato桌面我的文件毕业设计太阳能6. 软件设计6.1太阳能供电系统程序设计TitleSizeNuntoer停止为蓄电池充电持续为蓄电池充电检测太阳能电池板和蓄电池两端V板V蓄停止蓄电池放电打开蓄电池放电V 蓄10.8V返回 图6.1太阳能供电系统程序流程图太阳能供电系统作为该温室大棚所有电源的来源, 其中通过单片机检测太阳能电池板和蓄电池两端的电压来控制供电系统的充放电,从而达到为各个负载供电的目的。6.2集中控制系统程序设计集中控制系统是温室大棚环境控制的主机,当检测系统扫描到的环境参数传送到其主系统中,经过数据比较,发送电磁继电器是否动作命令到检测系统同时是否启动报警,从而完成集中控制系统的功能。其程序流程图如图 6.2所示。图6.2控制系统程序流程图6.3检测系统程序设计检测系统相当于温室大棚环境控制系统中的分机,其主要功能就是利用各传 感

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论