


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、非线性不确定系统最优控制的自适应动态规划法研究非线性系统的最优控制问题一直备受关注 . 最优控制问题的核心是求解哈密尔顿-雅可比-贝尔曼(HJB)方程.自适应/近似动态规划(ADP)作为求解HJB方程的有效方法,能够克服传统动态规划引起的计算复杂性问题.ADP算法融合了加强学习 , 自适应技术, 动态规划理论, 神经网络 , 此算法由于可以按照时间正向求解最优控制问题而获得广泛关注. 本文基于自适应动态规划, 研究了含有控制约束的未知系统有限时间最优控制, 含有饱和执行器的局部未知系统的非零和问题含有外部扰动和控制约束的非线性不确定系统的Hg跟踪控制,未知时滞系统的有限时间最优控制 . 文章主
2、要内容如下:(1) 针对带有饱和执行器且局部未知的非线性连续系统的有限时间最优控制问题 , 设计了一种基于自适应动态规划 (ADP)的在线积分增强学习算法, 并给出算法的收敛性证明 . 首先 , 引入非二次型函数处理控制饱和问题 . 其次 , 设计一种由常量权重和时变激活函数构成的单一网络, 来逼近未知连续的值函数, 与传统双网络相比减少了计算量. 同时 , 综合考虑神经网络产生的残差和终端误差 , 应用最小二乘法更新神经网络权重 , 并且给出基于神经网络的迭代值函数收敛到最优值的收敛性证明 . 最后 , 通过两个仿真例子验证了算法的有效性.(2) 设计了基于自适应动态规划的最优在线学习算法,
3、 用以解决局部未知且含有控制约束的非线性动态系统的多人非零和问题 . 首先 , 证明了在线的策略迭代(PI) 算法等价于牛顿迭代算法. 其次 , 针对每个执行者 , 采用具有时变激活函数的单一神经网络近似时变的哈密尔顿- 雅可比 - 贝尔曼 (HJB) 方程组的解 . 神经网络权重以在线方式按照时间正向迭代更新. 控制受限这一条件通过引入非二次型函数得到解决. 对于多人非零和问题 , 给出了基于神经网络的在线学. 最后 , 我们通过仿真算例验证了提出算法的有效性 .(3) 提, 进而解决一类非线性连续时滞系统的有限时间最优控制问题 . 这个不依赖于策略的在线学习算法用来学习时变HJB方程的两阶
4、段解,本算法不需要时滞系统的动态知识.采用具有时变的激活函数的执行-评价神经网络结构实现算法的在线调节 . 同时考虑残差误差和终端误差实时调节两个神经网络的权重 . 给出两个仿真算例来验证算法的可应用性.(4)针对含有外部扰动和输入限制的非线性不确定系统,设计了 H-跟踪控制器.引入了含折扣因子的非二次型函数作为H性能指标,因此可将控制输入编译到性能指标中.求解H跟踪控制问题的难点在于求解跟踪哈密尔顿-雅可比- 艾萨克(HJI) 方程 , 此方程是偏微分方程. 即使是简单的系统, 此方程的分析解也很难获得. 为了克服这一困难 , 提出了一种不依赖于模型的积分加强在线学习算法 , 进而在线学习跟
5、踪HJI 方程的解 , 而且这里无需系统的动态信息 . 为了实施此算法 , 采用评价网 - 执行网 - 扰动网神经网络结构 , 并且三网络同时进行调节 . 借助李亚普诺夫稳定性理论, 给出系统稳定性和收敛性证明. 另外, 添加鲁棒控制项去抑制神经网络逼近误差, 于是闭环系统可达到渐进稳定. 最后, 给出两个仿真例子来验证提出算法的有效性.(5) 针对一类带有外部扰动和饱和执行器的不确定非线性连续系统, 提出一种基于神经网络的无模型积分加强在线学习算法 , 用以解决有限时间H最优跟踪控制问题.借助跟踪误差系统和信号产生系统,组建成一个增广的系统. 相对于这个增广后的系统 , 能够推导出对应的时变HJI 方程 .然而这个方程由于内在的非线性性和时变的特点 , 此方程的求解极其困难 . 因此 ,设计了一种基于执行- 评价 - 扰动网络结构的算法 , 此算法在不需要系统动态信息的情况下 , 能够得到时变HJI 方程的近似解. 因为时变 HJI 方程的解是依赖于时间的,于是采用具有时变特点的激活函数的神经网络进行逼近. 其次 , 为了满足终端约束条件 , 在设计神经网络权重更新率时, 额外的终端误差项被考虑进去. 最后 ,借助李亚普诺夫稳定性理论, 给
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 私募股权投资退出机制协议
- 咖啡店品牌加盟与定制化咖啡豆采购合同
- 五年级科学实践基地参观计划
- 小红书直播电商合作人产品评测及反馈服务合同
- 高效精准基因编辑技术服务项目股权投资合同
- 家居装饰自媒体矩阵内容制作与推广协议
- 节庆活动广告制作安装与现场维护服务协议
- 物联网物联网工程师设备维修与维护合同
- 消防安全责任落实措施
- 成人英语配音提升课程计划
- 2025年铁路集装箱市场前景分析
- 2024-2025中国商旅管理白皮书
- 船舶维修合同协议书
- 《比亚迪品牌历史课件》课件
- 小学心理健康家长会课件
- 2025年4月自考00160审计学答案含评分参考
- 购买木地板合同协议
- 严重开放性肢体创伤早期救治专家共识解读
- 2025年公共安全管理考试试题及答案
- 速卖通开店考试最权威答案
- 输液导管相关静脉血栓形成中国专家共识 课件
评论
0/150
提交评论