初一讲义2-二元一次方程组及实际应用_第1页
初一讲义2-二元一次方程组及实际应用_第2页
初一讲义2-二元一次方程组及实际应用_第3页
初一讲义2-二元一次方程组及实际应用_第4页
初一讲义2-二元一次方程组及实际应用_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 一对一辅导讲义 年 级:初一 辅导科目:数学 课时数:3 学生姓名: 教师姓名:翟利利 上课时间:2014-课 题二元一次方程组的解法及实际应用教学目的1、 了解本节所要学习的主要知识内容,对学习的知识做到心中有数。2、针对学生以往学习的优势和不足,能够有针对性地进行预习、复习教学内容复习二元一次方程组的解法:(一)二元一次方程组的解法通常有两种方法,分别是: 和 (二)解下列方程组:(1)解方程组 (2)(3)若等式中的x、y满足方程组,求mn的值。知识点一:列方程组解应用题的基本思想列方程组解应用题是把“ ”转化为“ ”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的 关系.

2、 一般来说,有几个未知数就列出几个方程,所列方程必须满足: (1)方程两边表示的是 ;(2)同类量的单位要统一;(3)方程两边的数值要相等.知识点二:列方程解应用题中常用的基本等量关系(一)行程问题:(1)追及问题:追及问题是行程问题中很重要的一种,它的特点是 而行。这类问题比较直观,画线段图便于理解、分析。其等量关系式是:两者的行程的 开始时两者相距的路程;路程 ×时间;速度 ;时间 。(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是 而行。这类问题也比较直观,因而也画线段图帮助理解、分析。这类问题的等量关系是:双方所走的路程之 总路程。(3)航行问题:船在静水中的速

3、度 船的顺水速度;船在静水中的速度水速 ;顺水速度逆水速度 ×水速。注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。(二)工程问题: ×工作时间=工作量.(三)商品销售利润问题:(1)利润 成本(进价);(2);(3)利润成本(进价)× ;(4)标价成本(进价)×(1 );(5)实际售价标价×打折率;注意:“商品利润售价成本”中的右边为正时,是盈利;为负时,就是亏损。打几折就是按标价的十分之几或百分之几十销售。(例如八折就是按标价的十分之八即五分之四或者百分之八十)(四)储蓄问题:(1)基本概念本金:顾客

4、存入银行的钱叫做本金。利息:银行付给顾客的酬金叫做利息。本息和:本金与 的和叫做本息和。期数:存入银行的时间叫做期数。利率:每个期数内的利息与本金的比叫做利率。利息税:利息的税款叫做利息税。(2)基本关系式利息本金×利率×期数本息和本金+利息本金+本金×利率×期数本金×(1利率×期数)利息税利息×利息税率本金×利率×期数×利息税率。税后利息利息×(1利息税率) 年利率月利率× 月利率 ×。注意:免税利息=利息 (五)产品配套问题:解这类问题的基本等量关系是:总量各部

5、分之间的比例=每一套各部分之间的比例(六)增长率问题:解这类问题的基本等量关系式是:原量×(1增长率)增长后的量; 原量×(1减少率)减少后的量.(七)和差倍分问题:解这类问题的基本等量关系是:较大量 多余量,总量倍数×倍量.(八)数字问题:解决这类问题,首先要正确掌握自然数、奇数、偶数等有关概念、特征及其表示。如当n为整数时,奇数可表示为 (或 ),偶数可表示为2n等,有关两位数的基本等量关系式为:两位数=十位数字 +个位数字(九)浓度问题:溶液质量×浓度= .(十)几何问题:解决这类问题的基本关系式有关几何图形的性质、周长、面积等计算公式。(十一)年

6、龄问题:解决这类问题的关键是抓住两人年龄的增长数是相等的,两人的 是永远不会变的。(十二)优化方案问题:在解决问题时,常常需合理安排。需要从几种方案中,选择最佳方案,如网络的使用、到不同旅行社购票等,一般都要运用方程解答,得出最佳方案。注意:方案选择题的题目较长,有时方案不止一种,阅读时应抓住重点;比较几种方案得出最佳方案。知识点三:列二元一次方程组解应用题的一般步骤利用二元一次方程组探究实际问题时,一般可分为以下六个步骤:(1)审题:弄清题意及题目中的数量关系;(2)设未知数:可直接设元,也可间接设元;(3)找出题目中的 关系;(4)列出方程组:根据题目中能表示全部含义的等量关系列出方程,并

7、组成方程组;(5)解所列的方程组,并检验解的正确性;(6)写出答案.要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.解答步骤简记为:问题方程组解答(4)列方程组解应用题应注意的问题弄清各种题型中基本量之间的关系;审题时,注意从文字,图表中获得有关信息;注意用方程组解应用题的过程中单位的书写,设未知数和写答案都要带单位,列方程组与解方程组时,不要带单位;正确书写速度单位,避免与路程单位混淆;在寻找等量关系时,应注

8、意挖掘隐含的条件;列方程组解应用题一定要注意检验。经典例题类型一:列二元一次方程组解决行程问题例1甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?思路点拨:画直线型示意图理解题意:这里有两个未知数:(1)汽车的行程;(2)拖拉机的行程. 有两个等量关系:(1)相向而行:汽车行驶小时的路程拖拉机行驶小时的路程 千米;(2)同向而行:汽车行驶小时的路程拖拉机行驶小时的路程.举一反三:【变式1】甲、乙两人相距36千米

9、,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。类型二:列二元一次方程组解决工程问题例2一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少

10、?思路点拨:本题有两层含义,各自隐含两个等式,第一层含义:若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;第二层含义:若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元。设甲组单独做一天商店应付x元,乙组单独做一天商店应付y元,由第一层含义可得方程8(x+y)=3520,由第二层含义可得方程6x+12y=3480. 举一反三:【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙

11、公司?请你说明理由. 类型三:列二元一次方程组解决商品销售利润问题例3有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元。价格调整后,甲商品的利润率为4%,乙商品的利润率为5%,共可获利44元,则两件商品的进价分别是多少元?思路点拨:做此题的关键要知道:利润进价×利润率举一反三:【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?【变式2】某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A

12、B进价(元/件)12001000售价(元/件)13801200(注:获利 = 售价进价)求该商场购进A、B两种商品各多少件?类型四:列二元一次方程组解决银行储蓄问题例4小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2.25的教育储蓄,另一种是年利率为2.25的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?(利息所得税利息金额×20%,教育储蓄没有利息所得税)思路点拨:设教育储蓄存了x元,一年定期存了y元,我们可以根据题意可列出表格:教育储蓄一年定期合计现在xy一年后举一反三:【变式1】李明以两种形式分别储蓄了2

13、000元和1000元,一年后全部取出,扣除利息所得税可得利息43.92元.已知两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?(注:公民应缴利息所得税=利息金额×20%)思路点拔:扣税的情况:本金×年利率×(1-20%)×年数=利息(利息所得税=利息金额×20%).不扣税时:利息=本金×年利率×年数.【变式2】小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款

14、银行年利率为2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?类型五:列二元一次方程组解决生产中的配套问题例5某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只. 现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?思路点拨:本题的第一个相等关系比较容易得出:衣身、衣袖所用布料的和为132米;第二个相等关系的得出要弄清一整件衣服是怎么样配套的,即衣袖的数量等于衣身的数量的2倍(注意:别把2倍的关系写反了).举一反三:【变式1】现有190张铁皮做盒子,每张铁皮做8个

15、盒身或22个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子? 思路点拨:两个未知数是制盒身、盒底的铁皮张数,两个相等关系是:制盒身铁皮张数+制盒底铁皮张数=190;制盒身个数的2倍=制盒底个数. 【变式2】某工厂有工人60人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套。【变式3】一张方桌由1个桌面、4条桌腿组成,如果1立方米木料可以做桌面50个,或做桌腿300条。现有5立方米的木料,那么用多少立方米木料做桌面,用多少立方米木料做桌

16、腿,做出的桌面和桌腿,恰好配成方桌?能配多少张方桌?类型六:列二元一次方程组解决增长率问题例6某工厂去年的利润(总产值总支出)为200万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元,去年的总产值、总支出各是多少万元?思路点拨:设去年的总产值为x万元,总支出为y万元,则有 总产值/万元总支出/万元利润/万元去年xy200今年根据题意知道去年的利润和今年的利润,由利润=总产值总支出和表格里的已知量和未知量,可以列出两个等式。举一反三:【变式】若条件不变,求今年的总产值、总支出各是多少万元?思考:本问题还有没有其它的设法?【变式2】某城市现有人口42万

17、,估计一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口增加1%,求这个城市的城镇人口与农村人口。思路点拨:由题意得两个等式关系,两个相等关系为:(1)城镇人口+农村人口=42万(2)城镇人口×(1+0.8%)+农村人口×(1+1.1%)=42×(1+1%)类型七: 列二元一次方程组解决和差倍分问题例7(2011年北京丰台区中考一摸试题)“爱心”帐篷厂和“温暖”帐篷厂原计划每周生产帐篷共9千顶,现某地震灾区急需帐篷14千顶,两厂决定在一周内赶制出这批帐篷为此,全体职工加班加点,“爱心”帐篷厂和“温暖”帐篷厂一周内制作的帐篷数分别达到了原来的1.6倍、1

18、.5倍,恰好按时完成了这项任务求在赶制帐篷的一周内,“爱心”帐篷厂和“温暖”帐篷厂各生产帐篷多少千顶?思路点拨:找出已知量和未知量,根据题意知未知量有两个,所以列两个方程,根据计划前后倍数关系由已知量和未知量列出两个等式,即是两个方程组成的方程组。举一反三:【变式1】(2011年北京门头沟区中考一模试题) “地球一小时”是世界自然基金会在2007年提出的一项倡议号召个人、社区、企业和政府在每年3月最后一个星期六20时30分21时30分熄灯一小时,旨在通过一个人人可为的活动,让全球民众共同携手关注气候变化,倡导低碳生活中国内地去年和今年共有119个城市参加了此项活动,且今年参加活动的城市个数比去

19、年的3倍少13个,问中国内地去年、今年分别有多少个城市参加了此项活动【变式2】游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽。如果每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽比红色的多1倍,你知道男孩与女孩各有多少人吗?思路点拨:本题关键之一是:小孩子看游泳帽时 只看到别人的,没看到自己的帽子。关键之二是:两个等式,列等式要看到重点语句,第一句:每位男孩看到蓝色与红色的游泳帽一样多;第二句:每位女孩看到蓝色的游泳帽比红色的多1倍。找到已知量和未知量根据这两句话列两个方程。类型八:列二元一次方程组解决数字问题例8.两个两位数的和是68,在较大的两位数的右边接着写较小

20、的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数,已知前一个四位数比后一个四位数大2178,求这两个两位数。思路点拨:设较大的两位数为x,较小的两位数为y。问题1:在较大的两位数的右边写上较小的两位数,所写的数可表示为:100xy问题2:在较大数的左边写上较小的数,所写的数可表示为:100yx举一反三:【变式1】一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字之和,商是5,余数是1,这个两位数是多少?【变式2】一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半

21、还少9,求这个两位数? 【变式3】某三位数,中间数字为0,其余两个数位上数字之和是9,如果百位数字减1,个位数字加1,则所得新三位数正好是原三位数各位数字的倒序排列,求原三位数。类型九:列二元一次方程组解决浓度问题例9现有两种酒精溶液,甲种酒精溶液的酒精与水的比是37,乙种酒精溶液的酒精与水的比是41,今要得到酒精与水的比为32的酒精溶液50kg,问甲、乙两种酒精溶液应各取多少?思路点拨:本题欲求两个未知量,可直接设出两个未知数,然后列出二元一次方程组解决,题中有以下几个相等关系:(1)甲种酒精溶液与乙种酒精溶液的质量之和50;(2)混合前两种溶液所含纯酒精质量之和混合后的溶液所含纯酒精的质量

22、;(3)混合前两种溶液所含水的质量之和混合后溶液所含水的质量;(4)混合前两种溶液所含纯酒精之和与水之和的比混合后溶液所含纯酒精与水的比。解法一:解法二:举一反三:【变式1】要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少? 思路点拨:配制盐水前后有两个等量关系式解此题的关键,等量关系一:配制盐水前后盐的含量相等;等量关系二:配制盐水前后盐水的总重量相等。 【变式2】一种35%的新农药,如稀释到1.75%时,治虫最有效。用多少千克浓度为35%的农药加水多少千克,才能配成1.75%的农药800千克?思路点拨:注意稀释前后溶液的质量保持不变,溶质的质量保持不变。类

23、型十:列二元一次方程组解决几何问题例10如图,用8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?思路点拨:初看这道题目中没有提供任何相等关系,但是题目提供的图形隐含着矩形两条宽相等,两条长相等,我们设每个小长方形的长为x,宽为y,就可以列出关于x、y的二元一次方程组。举一反三:【变式1】用长48厘米的铁丝弯成一个矩形,若将此矩形的长边剪掉3厘米,补到较短边上去,则得到一个正方形,求正方形的面积比矩形面积大多少?思路点拨:此题隐含两个可用的等量关系,其一长方形的周长为铁丝的长48厘米,第二个等量关系是长方形的长剪掉3厘米补到短边去,得到正方形,即是长边截掉3厘米等于短边加上3厘米。【变式2】一块矩形草坪的长比宽的2倍多10m,它的周长是132m,则长和宽分别为多少?类型十一:列二元一次方程组解决年龄问题例11今年父亲的年龄是儿子的5倍,6年后父亲的年龄是儿子的3倍,求现在父亲和儿子的年龄各是多少?思路点拨:解本题的关键是理解“6年后”这几个字的含义,即6年后父子俩都长了6岁。今年父亲的年龄是儿子的5倍,6年后父亲的年龄是儿子的3倍,根据这两个相等关系列方程。举

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论