




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、难点34 导数的运算法那么及根本公式应用难点磁场()曲线c:y=x33x2+2x,直线l:y=kx,且l与c切于点(x0,y0)(x00),求直线l的方程及切点坐标.案例探究例1求函数的导数:级题目.知识依托:解答此题的闪光点是要分析函数的结构和特征,挖掘量的隐含条件,将问题转化为根本函数的导数.错解分析:此题难点在求导过程中符号判断不清,复合函数的结构分解为根本函数出过失.技巧与方法:先分析函数式结构,找准复合函数的式子特征,按照求导法那么进行求导.(2)解:y=3,=axbsin2x,=avbyv=x,y=sin =xy=(3)=32·=32(avby)=32(avby)=32(
2、avby)=3(axbsin2x)2(absin2x)(3)解法一:设y=f(),=,v=x2+1,那么yx=yv·vx=f()·v·2x=f()··2x=解法二:y=f()=f()·()=f()·(x2+1)·(x2+1)=f()·(x2+1) ·2x=f()例2利用导数求和(1)sn=1+2x+3x2+nxn1(x0,nn*)(2)sn=c+2c+3c+nc,(nn*)级题目.知识依托:通过对数列的通项进行联想,合理运用逆向思维.由求导公式(xn)=nxn1通项的形式结构.错解分析:此题难点
3、是考生易犯思维定势的错误,受此影响而不善于联想.技巧与方法:第(1)题要分x=1和x1讨论,等式两边都求导.解:(1)当x=1时sn=1+2+3+n=n(n+1);当x1时,x+x2+x3+xn=,两边都是关于x的函数,求导得(x+x2+x3+xn)=()即sn=1+2x+3x2+nxn1=(2)(1+x)n=1+cx+cx2+cxn,两边都是关于x的可导函数,求导得n(1+x)n1=c+2cx+3cx2+ncxn1,令x=1得,n·2n1=c+2c+3c+nc,即sn=c+2c+nc=n·2n1锦囊妙计1.深刻理解导数的概念,了解用定义求简单的导数.表示函数的平均改变量,
4、它是x的函数,而f(x0)表示一个数值,即f(x)=,知道导数的等价形式:.2.求导其本质是求极限,在求极限的过程中,力求使所求极限的结构形式转化为极限的形式,即导数的定义,这是顺利求导的关键.3.对于函数求导,一般要遵循先化简,再求导的根本原那么,求导时,不但要重视求导法那么的应用,而且要特别注意求导法那么对求导的制约作用,在实施化简时,首先必须注意变换的等价性,防止不必要的运算失误.4.复合函数求导法那么,像链条一样,必须一环一环套下去,而不能丢掉其中的一环.必须正确分析复合函数是由哪些根本函数经过怎样的顺序复合而成的,分清其间的复合关系.歼灭难点训练一、选择题1.()y=esinxcos
5、(sinx),那么y(0)等于( )2.()经过原点且与曲线y=相切的方程是( )a.x+y=0或+y=0b.xy=0或+y=0c.x+y=0或y=0d.xy=0或y=0二、填空题3.()假设f(x0)=2, =_.4.()设f(x)=x(x+1)(x+2)(x+n),那么f(0)=_.三、解答题5.()曲线c1:y=x2与c2:y=(x2)2,直线l与c1、c2都相切,求直线l的方程.6.()求函数的导数(1)y=(x22x+3)e2x;(2)y=.7.()有一个长度为5 m的梯子贴靠在笔直的墙上,假设其下端沿地板以3 m/s的速度离开墙脚滑动,求当其下端离开墙脚1.4 m时,梯子上端下滑的
6、速度.8.()求和sn=12+22x+32x2+n2xn1,(x0,nn*).参考答案难点磁场解:由l过原点,知k=(x00),点(x0,y0)在曲线c上,y0=x033x02+2x0,=x023x0+2y=3x26x+2,k=3x026x0+2又k=,3x026x0+2=x023x0+22x023x0=0,x0=0或x0=由x0,知x0=y0=()33()2+2·=k=l方程y=x 切点(,)歼灭难点训练一、1.解析:y=esinxcosxcos(sinx)cosxsin(sinx),y(0)=e0(10)=1答案:b2.解析:设切点为(x0,y0),那么切线的斜率为k=,另一方面
7、,y=()=,故y(x0)=k,即或x02+18x0+45=0得x0(1)=3,y0(2)=15,对应有y0(1)=3,y0(2)=,因此得两个切点a(3,3)或b(15,),从而得y(a)= =1及y(b)= ,由于切线过原点,故得切线:la:y=x或lb:y=.答案:a二、3.解析:根据导数的定义:f(x0)=(这时)答案:14.解析:设g(x)=(x+1)(x+2)(x+n),那么f(x)=xg(x),于是f(x)=g(x)+xg(x),f(0)=g(0)+0·g(0)=g(0)=1·2·n=n!答案:n!三、5.解:设l与c1相切于点p(x1,x12),与
8、c2相切于q(x2,(x22)2)对于c1:y=2x,那么与c1相切于点p的切线方程为yx12=2x1(xx1),即y=2x1xx12对于c2:y=2(x2),与c2相切于点q的切线方程为y+(x22)2=2(x22)(xx2),即y=2(x22)x+x224两切线重合,2x1=2(x22)且x12=x224,解得x1=0,x2=2或x1=2,x2=0直线l方程为y=0或y=4x46.解:(1)注意到y0,两端取对数,得lny=ln(x22x+3)+lne2x=ln(x22x+3)+2x (2)两端取对数,得ln|y|=(ln|x|ln|1x|),两边解x求导,得7.解:设经时间t秒梯子上端下滑s米,那么s=5,当下端移开1.4 m时,t0=,又s= (259t2)·(9·2t)=9t,所以s(t0)=9
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 主播签约薪酬合同范本
- 别墅室内石材合同范本
- 保密设备合同范本
- 分时度假 合同范本
- 保险增值服务合同范本
- 第15课 现代医疗卫生体系与社会生活 教学设计-2023-2024学年统编版(2019)高二历史选择性必修2 经济与社会生活
- 劳动合同范本txt
- 2024年招商银行郑州分行招聘考试真题
- 二手电线买卖合同范本
- 2024年银川市永宁三沙源上游学校招聘笔试真题
- 施工安全管理培训资料
- 第16课数据管理与编码(教案)四年级全一册信息技术人教版
- 0-3岁婴幼儿基础护理知到智慧树章节测试课后答案2024年秋杭州师范大学
- 挂靠免责协议书范本
- 2024-2030年中国新媒体市场前景规模及发展趋势分析报告
- Python金融数据分析与挖掘(微课版) 教案全套 黄恒秋
- 中建10t龙门吊安拆安全专项施工方案
- 国内外测井技术现状与展望文档
- 《销售人员的培训》课件
- 国防动员课件教学课件
- 特殊作业安全管理监护人专项培训课件
评论
0/150
提交评论