2011年广州市高三数学 调研测试试题_第1页
2011年广州市高三数学 调研测试试题_第2页
2011年广州市高三数学 调研测试试题_第3页
2011年广州市高三数学 调研测试试题_第4页
2011年广州市高三数学 调研测试试题_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2011年广州市高三调研测试说明:1参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数 2对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分 3解答右端所注分数,表示考生正确做到这一步应得的累加分数4只给整数分数,选择题和填空题不给中间分一、选择题:本大题主要考查基本知识和基本运算共8小题,每小题5分,满分

2、40分.题号12345678答案ACDBBBCB二、填空题:本大题主要考查基本知识和基本运算本大题共7小题,考生作答6小题,每小题 5分,满分30分其中1415题是选做题,考生只能选做一题 9 10 11. 12. 13. 14 15相交三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16(本小题满分12分)(本小题主要考查平面向量, 同角三角函数的基本关系、解三角形等知识, 考查化归与转化的数学思想方法和运算求解能力) (1) 解: , , . 2分 . 4分 (2)解: 由(1)知,且, . 6分 , 由正弦定理得,即, . 8分,. 10分. 12分17.

3、 (本小题满分12分)(本小题主要考查条件概率、数学期望等知识, 考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识) (1) 解法1: 设事件表示“甲厂生产的灯泡”, 事件表示“灯泡为一等品”, 依题意有, , 根据条件概率计算公式得. 4分 解法2: 该商店储存的50个灯泡中是甲厂生产的灯泡有个, 乙厂生产的灯泡 有个, 其中是甲厂生产的一等品有个, 乙厂生产的 一等品有个, 故从这50个灯泡中随机抽取出一个灯泡, 它是甲厂生产的一等品的概率是 . 4分(2) 解: 的取值为, 5分 , , 8分 的分布列为: . 12分18.(本小题满分l4分) (本小题主要考查空间

4、线面关系、直线与平面所成的角等知识, 考查数形结合的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) (1)证明: 平面,平面,.,平面,平面,平面.平面, 3分, ,平面,平面,平面.平面,. 6分(2)解法1:由(1)知,又, 则是的中点, 在Rt中,得,在Rt中,得, .设点到平面的距离为,由, 8分得.解得, 10分设直线与平面所成的角为,则, 12分 . 直线与平面所成的角的余弦值为. 14分解法2: 如图所示,以点为坐标原点,建立空间直角坐标系, 则,. . 8分设平面的一个法向量为,由可得:令,得. 10分设直线与平面所成的角为,则. 12分.直线与平面所成的角的余弦

5、值为. 14分19(本小题满分14分)(本小题主要考查椭圆、圆、直线与圆的位置关系等知识, 考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力、运算求解能力和创新意识)(1)解:椭圆的离心率, . 2分 解得. 椭圆的方程为 4分(2)解法1:依题意,圆心为 由 得. 圆的半径为 6分 圆与轴相交于不同的两点,且圆心到轴的距离, ,即 弦长 8分的面积 9分 . 12分 当且仅当,即时,等号成立. 的面积的最大值为 14分解法2:依题意,圆心为 由 得. 圆的半径为 6分 圆的方程为 圆与轴相交于不同的两点,且圆心到轴的距离, ,即 在圆的方程中,令,得, 弦长 8分的面积

6、9分 . 12分 当且仅当,即时,等号成立. 的面积的最大值为 14分20.(本小题满分14分) (本小题主要考查函数、导数等知识, 考查函数与方程、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和应用意识) (1)解: 函数的定义域为. . 当, 即时, 得,则. 函数在上单调递增. 2分 当, 即时, 令 得,解得. () 若, 则. , , 函数在上单调递增. 4分 ()若,则时, ; 时, ,函数在区间上单调递减, 在区间上单调递增. 6分综上所述, 当时, 函数的单调递增区间为; 当时, 函数的单调递减区间为, 单调递增区间为. 8分(2) 解: 由, 得,

7、化为.令, 则.令, 得.当时, ; 当时, .函数在区间上单调递增, 在区间上单调递减.当时, 函数取得最大值, 其值为. 10分而函数,当时, 函数取得最小值, 其值为. 12分 当, 即时, 方程只有一个根. 14分21. (本小题满分14分)(本小题主要考查导数、数列、不等式、定积分等知识, 考查化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和创新意识) (1) 解: 由,设直线的斜率为,则.直线的方程为.令,得, 2分, .直线的方程为.令,得. 4分一般地,直线的方程为,由于点在直线上,.数列是首项为,公差为的等差数列. 6分(2)解: . 8分(3)证明:. 10分 ,. 要证明,只要证明,即只要证明. 11分 证法1:(数学归纳法) 当时,显然成立;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论