版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1. 考试范围:第二章第六章+第八章 大纲中要求的重点内容注:第一章自动控制的一般概念不考,但其内容都为后续章节服务。特别是作为自动化专业的学生应该知道:开环和闭环控制系统的原理和区别2. 题型安排与分数设置:1) 选择题 -20分(共10小题,每小题2分)2) 填空题 -20分 注:选择题、填空题重点考核对基础理论、基本概念以及常识性的小知识点的掌握程度-对应上课时老师反复强调的那些内容。如线性系统稳定的充分必要条件、什么影响系统稳态误差等。3) 计算题-60分 注:计算题重点考核对2-6章重点内容的掌握程度-对应上课时老师和大家利用大量例题反复练习的那部分。如根轨迹绘制和分析以及基于频率法
2、的串联校正等。21第二章 控制系统的数学模型复习指南与要点解析要求: 根据系统结构图应用结构图的等效变换和简化或者应用信号流图与梅森公式求传递函数(方法不同,但同一系统两者结果必须相同)一、控制系统3种模型,即时域模型-微分方程;复域模型传递函数;频域模型频率特性。其中重点为传递函数。在传递函数中,需要理解传递函数定义(线性定常系统的传递函数是在零初始条件下,系统输出量的拉氏变换式与输入量的拉氏变换式之比)和性质。零初始条件下:如要求传递函数需拉氏变换,这句话必须的。二、结构图的等效变换和简化- 实际上,也就是消去中间变量求取系统总传递函数的过程。1等效原则:变换前后变量关系保持等效,简化的前
3、后要保持一致(P45)2结构图基本连接方式只有串联、并联和反馈连接三种。如果结构图彼此交叉,看不出3种基本连接方式,就应用移出引出点或比较点先解套,再画简。其中:引出点前移在移动支路中乘以。(注意:只须记住此,其他根据倒数关系导出即可) 引出点后移在移动支路中乘以。 相加点前移在移动支路中乘以。 相加点后移在移动支路中乘以。 注:乘以或者除以,到底在系统中指什么,关键看引出点或者相加点在谁的前后移动。在谁的前后移动,就是谁。例1: 利用结构图化简规则,求系统的传递函数 C(s)/R(s)解法 1: 1) 前面的引出点后移到的后面(注:这句话可不写,但是必须绘制出下面的结构图,表示你如何把结构图
4、解套的)2) 消除反馈连接3) 消除反馈连接4) 得出传递函数注:可以不写你是怎么做的,但是相应的解套的那步结构图必须绘制出来。一般,考虑到考试时间限制,化简结构图只须在纸上绘制出2-3个简化的结构图步骤即可,最后给出传递函数。)解法 2: 后面的相加点前移到前面,并与原来左数第二个相加点交换位置,即可解套,自己试一下。注:条条大路通罗马,但是其最终传递函数一定相同)注:比较点和引出点相邻,一般不交换位置,切忌,否则要引线)三. 应用信号流图与梅森公式求传递函数梅森公式: 式中,P 总增益;n 前向通道总数;Pk 第k条前向通道增益;系统特征式,即Li 回路增益;La 所有回路增益之和;LbL
5、c 所有两个不接触回路增益乘积之和;LdLeLf 所有三个不接触回路增益乘积之和;k第k条前向通道的余因子式,在计算式中删除与第k条前向通道接触的回路。注:一般给出的是结构图,若用梅森公式求传递函数,则必须先画出信号流图。注意2:在应用梅森公式时,一定要注意不要漏项。前向通道总数不要少,各个回路不要漏。G1G2G3H1G5H3H2G4+-R(s)C(s)+例2: 已知系统的方框图如图所示 。试求闭环传递函数C(s)/R(s) (提示:应用信号流图及梅森公式) 解1):绘制信号流图- G5- H1H3G3G2G1-H2G4R(s)C(s) 注:别忘了标注箭头表示信号流向。2) 应用梅森公式求闭环
6、传递函数:前向通道增益;回路增益;特征式; 余因子式(对应各个前项通道的) ;-经验:一般余因子式不会直接等于1,不然太简单了闭环传递函数四、知道开环传递函数的定义,并会求闭环系统的传递函数1开环传递函数,如图:(若,则若,则-常见)2四个闭环系统的传递函数-特点分母相同,即特征方程相同(通常说的输出对输入的传递函数); 注:后面求稳态误差需要第3章 线性系统的时域分析 要求:1) 会分析系统的时域响应,包括动态性能指标;2) 会用劳斯判据判定系统稳定性并求使得系统稳定的参数条件;3)会根据给出的系统结构图,求出系统稳态误差,并减小或消除之。一、时域分析方法和思路:已知系统输入和系统模型,求时
7、域响应。例1:求一阶系统的单位阶跃响应。1)输入,则其拉氏变换为,则2)3)对上式取拉氏反变换,得其响应单位阶跃信号的响应为:注1:为稳态分量,它的变化由输入信号的形式(上例中)决定; (上例中)为暂态分量,由闭环传递函数的极点(上例中)决定。二、线性系统稳定的充要条件是闭环特征根均需具有负实部或者说的极点都在在s平面右半部分。-系统稳定性是系统本来的固有特性,与外输入信号无关。1 只有当系统的特征根全部具有负实部时,系统达到稳定。2 如果特征根中有一个或一个以上具有正实部,则这表明系统不稳定;3 如果特征根中具有一个或一个以上的零实部根,而其余的特征根均具有负实部,则脉冲响应函数趋于常数,或
8、者趋于等幅正弦(余弦)振荡,称为临界稳定。 注2: 根据如果极点都在s平面左半部分,则暂态分量随时间增大而衰减为0; 如果极点有一个都在s平面右半部分,则暂态分量随时间增大而发散。 三、二阶系统单位阶跃响应及其欠阻尼情况下指标计算1熟悉二阶系统单位阶跃响应的3个对应关系,即:不同阻尼比类型不同单位阶跃的时间响应波形图-不同系统稳定性2二阶系统欠阻尼单位阶跃响应的指标计算:欠阻尼二阶系统上升时间、峰值时间、调节时间、超调量计算(公式必须牢记) ,其中,阻尼角,阻尼振荡频率 例2:2004年考题已知控制系统如图所示,(1) 确定使闭环系统具有及的值和值;(2) 计算系统响应阶跃输入时的超调量和峰值
9、时间。解:(1) ;, 则 (2) ;。例3 2006年考题:已知控制系统如图所示,在时,闭环系统响应阶跃输入时的超调量、峰值时间秒,确定系统的值和值;解:(1) ;则则四、附加闭环负实零点对系统影响具有闭环负实零点时的二阶系统分析对系统的作用表现为:1. 仅在过渡过程开始阶段有较大影响; 2. 附加合适的闭环负实零点可使系统响应速度加快,但系统的超调量略有增大;3. 负实零点越接近虚轴,作用越强。五、高阶系统的时域分析-利用闭环主导极点降阶如果在系统所有的闭环极点中,距离虚轴最近的闭环极点周围没有闭环零点,而其他闭环极点又远离虚轴,且满足式中,为主导极点; 为非主导极点。则距离虚轴最近的闭环
10、极点所对应的响应分量随着时间的推移衰减得最慢,从而在系统的响应过程中起主导作用。一般闭环主导极点为共轭闭环主导极点或者一个实闭环主导极点。六、利用劳斯判据判定系统稳定性并求使得系统稳定的参数条件。1根据特征方程:,则线性系统稳定的充要条件是劳斯表首列元素均大于零;首列系数符号改变次数与分布在s平面右半部的极点个数相同。2劳斯表特殊情况时,系统临界稳定或者不稳定。3 如果系统稳定,则特征方程系数同号且不缺项;4利用劳斯判据判定系统稳定性例4: 已知系统结构图,试用劳斯稳定判据确定使闭环系统稳定的k 的取值范围。 解:整理, 从高到低排列特征方程系数列劳斯表:S413kS3320S27/3kS1(
11、14-9 k)/70S0k如果劳斯表中第一列的系数均为正值,因此,且。所以。七、稳态误差以及减小或者消除稳态误差1. 稳态误差定义: 其中,误差传递函数,2终值定理法求稳态误差如果有理函数除了在原点有唯一的极点外,在s右半平面及虚轴解析,即的极点均位于s左半平面(包括坐标原点),则根据终值定理可求稳态误差。注:一般当输入是为阶跃、速度、加速度信号及其组合信号时,且系统稳定时,可应用终值定理求稳态误差。3系统型别-定义为开环传递函数在s平面的积分环节个数。其中,K:系统的开环增益(放大倍数),为型别。4基于静态误差系数的稳态误差-当-输入为阶跃、速度、加速度信号及其组合信号时, 静态位置误差系数
12、 , 静态速度误差系数 , 静态加速度误差系数 ,要求:根据给出系统开环传递函数和输入,能用静态误差系数能够求出稳态误差。 例5: 如图 求系统当 k=10, 输入为 r(t)=1.5t.时的稳态误差。解: 开环传递函数, 因为 r(t)=1.5t,则, 因此。5减小或者消除稳态误差的方法:a. 增大开环放大倍数(开环增益)(在保证系统稳定的前提下)b. 提高系统的型别(在保证系统稳定的前提下)。c. 采用复合控制方法(要知道其原理):包括输入补偿和扰动补偿两种,都可以消除稳态误差而不影响系统稳定性。注:若零点包含输入信号的全部极点,则系统无稳态误差。同理,若零点包含输入信号的全部极点,则系统
13、无稳态误差。例6 2007一复合控制系统如图所示。图中:K1、K2、T1、T2均为已知正值。当输入量r(t)= t2/2时,要求系统的稳态误差为零,试确定参数 a和b 。解 系统闭环传递函数为,代入则(只适应于单位负反馈系统)欲使系统闭环系统响应速度输入的稳态误差为0,即 ,应该包含的全部极点。,则注:要求会求误差传递函数,包括扰动下的误差传递函数(一般单位反馈)。第五章 线性系统的频域分析法第六章的基础要求:1) 绘制出频率响应曲线开环幅相曲线或开环对数渐近幅频特性曲线(Bode图)-补线-应用奈奎斯特稳定判据判断系统稳定性及系统稳定的参数范围。2)利用开环对数幅频渐近特性确定最小相位系统的
14、传递函数一、频域分析法中开环传递函数的标准形式为时间常数形式二、最小相位系统开环幅相曲线的绘制1)极坐标图的起点: ,2)极坐标图的终点:当时,。3)与实轴交点 -4)从起点到终点的相角及与实轴交点位置共同决定曲线所在象限。K 值变化仅改变幅相曲线的幅值及与实轴交点的位置,不改变其形状。注:用箭头表示频率增大的方向。 例1 (P198)I型单位反馈控制系统开环传递函数为绘制开环幅相曲线。解:频率响应 1)起点:,;2)终点: ,(因为:),说明整个幅相曲线在II,III象限。3)与负实轴的交点:令,则。则可见,K 值变化仅改变幅相曲线的幅值及与负实轴交点的位置,不改变幅相曲线的形状。 三、最小
15、相位系统开环对数渐近幅频特性曲线(Bode图)的绘制(1) 将开环传递函数分解成典型环节乘积的形式(尾“1”型);(2) 将各典型环节的转折频率由低到高从左向右依次标注在横轴上(不妨设为:),将(最小转折频率)的频率范围设为低频段。(3)在低频段,开环对数渐近幅频特性 可见,其直线斜率为20。但是要画出这低频段渐近特性直线,还必须确定该直线或其延长线上一点(P202):法1:在小于第一个转折频率内任选一点,计算 。-常用法2:取特定频率,计算。法3:取为特殊值0,则,则计算出。 (4)从低频以后,沿频率增大的方向,每遇到一个转折频率就改变直线斜率,变化规律取决于该转折频率对应的典型环节种类。如
16、果典型环节为惯性环节或振荡环节,在交接频率之后,斜率要减小20dB/dec或40 db/dec;如果典型环节为一阶微分环节或二阶微分环节,在交接频率之后,斜率要增加20db/dec或40 db/dec。即一阶20dB/dec的整数倍,二阶40dB/dec的整数倍。(5)绘出用渐近线表示的对数幅频特性以后,如果需要,可以进行修正。通常只需修正转折频率处幅值就可以了。对于一阶项,在转折频率处的修正值为±3dB;对于二阶项,在转折频率处的修正值可由公式求出。 -一般不用修正。例2 已知,绘制Bode图。解:四、利用开环对数幅频渐近特性确定最小相位系统的传递函数1)确定系统积分或微分环节的个
17、数(利用低频段低频渐近线斜率为)。2)确定系统其他环节(根据转折频率前后斜率变化判断对应的环节类型,利用转折频率倒数确定时间常数)图中每次遇到一个交接频率改变一次分段直线的斜率。且斜率的变化对应这环节的类型。在交接频率之后,斜率要减小20db/dec或40 db/de为惯性环节或振荡环节;斜率要增加20db/dec或40 db/dec对应一阶微分环节或二阶微分环节。3) 参数K的确定:已知低频段或其延长线上一点确定)。例3解:1) 2) 3) 特别指出,半对数坐标系中求斜率: 例4 (见幻灯片) 已知最小相角系统开环对数渐近幅频曲线,求开环传递函数)。解:1)确定结构: 最左端直线的斜率为-4
18、0 db/dec,故而有2个积分环节。因为从1起,近似对数幅频曲线斜率变化20 db/dec和40 db/dec,故为1阶微分环节和2阶微分环节。于是系统的传递函数为:2)确定K: 法一)最左端直线的延长线和零分贝线的交点频率为,则。斜率:,则,则。 法二):21(已知),在处,直线1和2的纵坐标之和为0,即。 因此。则,则五. 频率域稳定判据1奈奎斯特稳定判据:闭环系统稳定的充分必要条件是闭合曲线不穿越(-1,j0)点,且逆时针围绕点 P 次。记为:其中:N为半闭合曲线GH穿越点左侧的的次数和。相角增大为正穿越GH :当:通常,只需绘制的半条GH曲线,即开环幅相曲线。当:当G(s)H(s)有
19、虚轴上的极点时,绘制的半条GH曲线外,半闭合曲线还要从出发,以无穷大为半径,逆时针转过/2 后的虚线圆弧, 箭头指向 。箭头指向增大的方向 。例5 设某单位反馈系统的开环传递函数为 应用Nyquist判据判别闭环系统的稳定性 解: 1)绘制Nyquist曲线起点: 终点:幅相曲线与负实轴有交点,可令ImG(j)H(j)=0,得2=1/8,=0.354。此时,ReG(j)H(j)= -10.67,即幅相曲线与负实轴的交点为(-10.67, j0)。2)补线:位由于有一个交点,因此=0+在实轴下面。开环系统有两个极点在s平面的坐标原点,因此幅相曲线应从=0+开始,以无穷大半径逆时针补画180度,箭
20、头指向=0+。如图。3) 由图可见,N =-1,即R=-2。系统无开环极点位于s平面的右半部,故P=0,所以Z=2,即系统不稳定,并有两个闭环极点在s平面的右侧。例5-2:设系统的开环传递函数为 ,试求使系统稳定的K值范围。解:1)首先作Nyquist曲线图,只求图过点的K值范围。2)代入,利用相频条件与幅频条件,则,。因此,一定与与负实轴有交点,其交点坐标为:令:,因为,所以,因此,即此时满足正好穿过点。3)分析:因为P=0,要使系统稳定,则,因此,不包围点,则幅相曲线与实轴的交点在的右边。当,正好穿过,当,正好在的右边,此时,系统稳定。因此系统稳定的K值范围为:。2007例:已知某系统当开
21、环增益时的开环频率特性Nyquist图如下图所示。该系统在右半平面的极点数,试分析当开环增益变化时其取值对闭环稳定性的影响。(5分)解:分析:求与负实轴的交点:令:,代入。因为K 值变化仅改变幅相曲线的幅值及与负实轴交点的位置,不改变幅相曲线的形状。 所以:设A点对应的频率为,B点对应的频率为,则A点:,求,由此,(1分)幅相曲线与负实轴交于A点B点:,求,由此,(1分)幅相曲线与负实轴交于B点注意:,表明与与负实轴的交点越负,即越往左边。分析:因为所以当,Nyquist曲线不包围(-1,j0)点,系统稳定(1分);当,Nyquist曲线顺时针包围(-1,j0)点,系统不稳定(1分);当,Ny
22、quist曲线不包围(-1,j0)点,上下穿越抵销,系统稳定(1分);注意:求稳定的范围总是与临界稳定时的参数有关,所有域中的分析方法皆是如此。注意:自己看P211例5-8 ,判断使得系统稳定的参数范围。2对数频率稳定判据:极坐标图 伯德图(-1,j0)点 0dB线和-180相角线 (-1, -)段 0dB线以上区域结论:Nyquist曲线自上而下(自下而上)穿越(-1,j0)点左侧负实轴相当于Bode图中当L()>0dB时相频特性曲线自下而上(自上而下)穿越-180°线。例6: 一反馈控制系统,其开环传递函数为,试用对数频率稳定判据判断系统的稳定性(见幻灯片)。解:系统的开环
23、对数频率特性曲线如图所示。由于G(s)H(s)有两个积分环节,故在对数相频曲线很小处,由下而上补画了-180°到0°的虚线,作为对数相频曲线的一部分。显见N= -1,R=-2 P=0,所以,说明闭环系统是不稳定的,有2个闭环极点位于s平面右半部。五、稳定裕度-后面校正设计用1. 相角裕度: 相角裕度2. 幅值裕度:工程上一般相角裕度,幅值裕度 例7 一单位反馈系统的开环传递函数为解:试求K=1时系统的相位裕度和增益裕度。 频率特性1)2) 六、开环对数幅频特性的三频段理论-后面校正设计用1低频段决定了系统稳态精度。低频段通常是指的开环对数渐近曲线在第一个转折频率以前的区段,这一段的特性完全由积分环节v和开环增益K决定。2中频段是指穿过0dB线(即附近)的频段,其斜率及宽度(中频段长度)集中反映了动态响应中的平稳性和快速性(见幻灯片)。一般的,中频段在附近以斜率为下降的直线。3 高频段指曲线在中频段以后的区段,反映出系统的低通滤波特性,形成了系统对高频干扰信号的抑制能力(见幻灯片)。第六章 线性系统的校正方法要求: 1) 在三频段理论基础上,能够熟练应用基于频率法的串联超前、滞后和滞后超
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业安全管理人员尽职免责培训课件
- 《卓越的销售技巧》课件
- 养老院老人康复设施维修人员福利待遇制度
- 新冠救治和转运人员的闭环管理要点(医院新冠肺炎疫情防控感染防控专家课堂培训课件)
- 《团队发展与增员》课件
- 挂靠买车合同(2篇)
- 2024年度文化艺术节摊位柜台租赁及展览合作合同范本3篇
- 2024年水果种植与销售一体化采购合同范本3篇
- 2024年物业管理合同(新版本)2篇
- 2024全新美陈艺术装置设计与实施合同3篇
- 病理学实验切片考试图片授课课件
- 2021离婚协议书电子版免费
- 国家开放大学《组织行为学》章节测试参考答案
- 《班主任工作常规》课件
- 青岛版六三二年级上册数学乘加乘减解决问题1课件
- 电子课件机械基础(第六版)完全版
- 消防维保方案 (详细完整版)
- 临沂十二五城市规划研究专题课件
- 2022更新国家开放大学电大《计算机应用基础本》终结性考试试题答案格式已排好任务一
- DB64∕T 001-2009 梯田建设技术规范
- DB62∕T 4128-2020 公路工程竣工文件材料立卷归档规程
评论
0/150
提交评论