《核磁共振波谱法》ppt课件_第1页
《核磁共振波谱法》ppt课件_第2页
《核磁共振波谱法》ppt课件_第3页
《核磁共振波谱法》ppt课件_第4页
《核磁共振波谱法》ppt课件_第5页
已阅读5页,还剩58页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第第1212章章 核磁共振波谱法核磁共振波谱法n利用核磁共振光谱进展构造测定,定性与定利用核磁共振光谱进展构造测定,定性与定量分析的方法称为核磁共振波谱法。简称量分析的方法称为核磁共振波谱法。简称 NMR 将磁性原子核放入强磁场后,用适宜频率的将磁性原子核放入强磁场后,用适宜频率的电磁波照射,它们会吸收能量,发生原子核能级电磁波照射,它们会吸收能量,发生原子核能级跃迁,同时产生核磁共振信号,得到核磁共振跃迁,同时产生核磁共振信号,得到核磁共振n在有机化合物中,经常研讨的是在有机化合物中,经常研讨的是1H和和13C的共的共振吸收谱,重点引见振吸收谱,重点引见H核共振的原理及运用核共振的原理及运用

2、概论概论与紫外、红外比较与紫外、红外比较n共同点都是吸收光谱共同点都是吸收光谱紫外紫外-可见可见红外红外核磁共振核磁共振吸收吸收能量能量紫外可见紫外可见光光200780nm红外光红外光780nm1000m无线电波无线电波1100m波长波长最长,能量最最长,能量最小小,不能发生不能发生电子振动转动电子振动转动能级跃迁能级跃迁跃迁跃迁类型类型电子能级电子能级跃迁跃迁振动能级振动能级跃迁跃迁自旋原子核发自旋原子核发生能级跃迁生能级跃迁概论概论nNMR是构造分析的重要工具之一,在化是构造分析的重要工具之一,在化学、生物、医学、临床等研讨任务中得学、生物、医学、临床等研讨任务中得到了广泛的运用。到了广泛

3、的运用。n分析测定时,样品不会遭到破坏,属于分析测定时,样品不会遭到破坏,属于无破损分析方法无破损分析方法概论概论12.1核磁共振根本原理核磁共振根本原理 原子核具有质量并带正原子核具有质量并带正电荷,大多数核有自旋景象,电荷,大多数核有自旋景象,在自旋时产生磁矩在自旋时产生磁矩,磁矩,磁矩的方向可用右手定那么确定,的方向可用右手定那么确定,核磁矩核磁矩和核自旋角动量和核自旋角动量P都都是矢量,方向相互平行,且是矢量,方向相互平行,且磁矩随角动量的添加成正比磁矩随角动量的添加成正比地添加地添加 = Pn 磁旋比,不同的核具有不磁旋比,不同的核具有不同的磁旋比,对某元素是定值。同的磁旋比,对某元

4、素是定值。是磁性核的一个特征常数是磁性核的一个特征常数12.1.1 原子核的自旋和磁矩原子核的自旋和磁矩n例:例:H原子原子H=2.68108T-1S-1(特特斯拉斯拉-1 秒秒-1) C13核的核的C =6.73107 T-1S-1等值,可以为 2231210) 1(2IIIhpn代入上式得代入上式得:) 1(2IIhn当当I=0时时,P=0,原子核没有自旋景象原子核没有自旋景象,只需只需I0,原原子核才有自旋角动量和自旋景象子核才有自旋角动量和自旋景象n核的自旋角动量是量子化的,与核的自旋量子数 I 的关系如下: = P12.1.1原子核的自旋和磁矩原子核的自旋和磁矩实际证明实际证明,核自

5、旋与核的质量数核自旋与核的质量数,质质子数和中子数有关子数和中子数有关质量数质量数为偶数为偶数原子序原子序数为偶数为偶数数自旋量子自旋量子数为数为0无自旋无自旋12C6,32S16,16O8质量数质量数为偶数为偶数原子序原子序数为奇数为奇数数自旋量子自旋量子数为数为1,2,3有自旋有自旋14N7质量数质量数为奇数为奇数原子序原子序数为奇数为奇或偶数或偶数自旋量子自旋量子数为数为1/2,3/2,5/2有自旋有自旋1H1, 13C6 19F9,31P1512.1.1原子核的自旋和磁矩原子核的自旋和磁矩nI=1/2的原子核的原子核,核电荷球形均匀分布于核电荷球形均匀分布于核外表核外表,如如: 1H1

6、, 13C6 , 14N7, 19F9,31P15n它们核磁共振景象较简单它们核磁共振景象较简单;谱线窄谱线窄,适宜适宜检测检测,目前研讨和运用较多的是目前研讨和运用较多的是1H和和13C核磁共振谱核磁共振谱12.1.1原子核的自旋和磁矩原子核的自旋和磁矩(一一)核自旋能级核自旋能级把自旋核放在场强为把自旋核放在场强为B0的磁场中的磁场中,由于磁矩由于磁矩 与磁与磁场相互作用场相互作用,核磁矩相对外加磁场有不同的取向核磁矩相对外加磁场有不同的取向,共有共有2I+1个个,各取向可用磁量子数各取向可用磁量子数m表示表示 m=I, I-1, I-2, -I每种取向各对应一定能量形状每种取向各对应一定

7、能量形状 I=1/2的氢核只需两种取向的氢核只需两种取向 I=1的核在的核在B0中有三种取向中有三种取向12.1.2 磁矩的空间量子化磁矩的空间量子化I = 1/2I = 1I = 2m = 1/2m = +1/2m = 1m = +1m = m = 2m = 1m = m = m = zzzB0与外磁场平行,能量较低,与外磁场平行,能量较低,m=+1/2, E 1/2= B0与外磁场方向相反与外磁场方向相反, 能量较高能量较高, m= -1/2, E -1/2=B0I=1/2的氢核的氢核12.1.2 磁矩的空间量子化磁矩的空间量子化nPz为自旋角动量在为自旋角动量在Z轴上的分量轴上的分量n核

8、磁矩在磁场方向上的分量核磁矩在磁场方向上的分量n核磁矩与外磁场相互作用而产生的核磁场作用能核磁矩与外磁场相互作用而产生的核磁场作用能E, 即各能级的能量为即各能级的能量为n E=ZB02hmPZ2hmZ E 1/2= B0E-1/2= B012.1.2 磁矩的空间量子化磁矩的空间量子化I=1/2的核自旋能级裂分与的核自旋能级裂分与B0的关系的关系n由式由式 E = ZB0及图可知及图可知1H核在磁场核在磁场 中中,由低能级由低能级E1向高能级向高能级E2跃迁跃迁,所需能量为所需能量为n E=E2E1= B0 (B0) = 2 B0nE与核磁矩及外磁场强度成正比与核磁矩及外磁场强度成正比, B0

9、越大越大,能级分裂能级分裂越大越大, E越大越大无磁场无磁场B0外加磁外加磁场场E1= B0E2= B0E=2 B0m= -1/2m= +1/212.1.2 磁矩的空间量子化磁矩的空间量子化n假设以一定频率的电磁波照射处于磁场假设以一定频率的电磁波照射处于磁场B0中中的核,且射频频率的核,且射频频率n n恰好满足以下关系时:恰好满足以下关系时:n h n n =E E=2 B0n 核磁共振条件式核磁共振条件式h02 n处于低能态的核将吸收射频能量而跃迁至高处于低能态的核将吸收射频能量而跃迁至高能态,这种景象叫做核磁共振景象。能态,这种景象叫做核磁共振景象。2hm I=1/2 的核发生核磁共振吸

10、收射频的核发生核磁共振吸收射频的频率,即共振频率。的频率,即共振频率。 自旋核的跃迁能量自旋核的跃迁能量 磁性核磁性核h n n =E高能级低能级12.1.3 核磁共振的条件核磁共振的条件n对自旋量子数对自旋量子数I=1/2的同一核来说的同一核来说,,因磁,因磁矩为一定值,矩为一定值,为常数,所以发生共为常数,所以发生共振时,照射频率的大小取决于外磁场强振时,照射频率的大小取决于外磁场强度的大小。外磁场强度添加时,为使核度的大小。外磁场强度添加时,为使核发生共振,照射频率也相应添加;反之,发生共振,照射频率也相应添加;反之,那么减小。那么减小。20得代入hBh02221产生核磁共振光谱的条件1

11、2.1.3 核磁共振的条件核磁共振的条件12.2.1 屏蔽常数屏蔽常数n任何原子核都被电子云所包围任何原子核都被电子云所包围,当当1H核自旋时核自旋时,核核周围的电子云也随之转动,在外磁场作用下,会周围的电子云也随之转动,在外磁场作用下,会感应产生一个与外加磁场方向相反的次级磁场,感应产生一个与外加磁场方向相反的次级磁场,实践上会使外磁场减弱,这种对抗外磁场的作用实践上会使外磁场减弱,这种对抗外磁场的作用称为屏蔽效应称为屏蔽效应.n如下图,如下图,1H核由于在化合核由于在化合物中所处的化学环境不同,物中所处的化学环境不同,核外电子云的密度也不同,核外电子云的密度也不同,遭到的屏蔽作用的大小亦不

12、遭到的屏蔽作用的大小亦不同,所以在同一磁场强度同,所以在同一磁场强度B0 下,不同下,不同 1H核的共振吸核的共振吸收峰频率不同。收峰频率不同。12.2.1 屏蔽常数屏蔽常数n影响屏蔽常数的要素:影响屏蔽常数的要素:n原子屏蔽原子屏蔽可指孤立原子的屏蔽,也可指原子屏蔽原子屏蔽可指孤立原子的屏蔽,也可指分子中原子的电子壳层的部分屏蔽,称为近程屏分子中原子的电子壳层的部分屏蔽,称为近程屏蔽效应。蔽效应。n分子内屏蔽:指分子中其他原子或原子团对所要分子内屏蔽:指分子中其他原子或原子团对所要研讨原子核的磁屏蔽作用。研讨原子核的磁屏蔽作用。n分子间屏蔽:指样品中其他分子对所要研讨的分分子间屏蔽:指样品中

13、其他分子对所要研讨的分子中核的屏蔽作用。影响这一部分的主要要素有子中核的屏蔽作用。影响这一部分的主要要素有溶剂效应、介质磁化率效应、氢键效应等。溶剂效应、介质磁化率效应、氢键效应等。 DPAAA12.2.2 化学位移的定义化学位移的定义)代入得把1220(BBBhBhB)(120210)( B)1 (20hB)1 (20B由于氢核具有不同的屏蔽常数由于氢核具有不同的屏蔽常数,引起外磁场或,引起外磁场或共振频率的挪动,这种景象称为化学位移。固定共振频率的挪动,这种景象称为化学位移。固定照射频率照射频率, 大的原子出如今高磁场处大的原子出如今高磁场处, 小的原子小的原子出如今低磁场处出如今低磁场处

14、12.2.2 化学位移的定义化学位移的定义化学位移有两种表示方法:化学位移有两种表示方法:1. 用共振频率差用共振频率差( )表示,单位表示,单位Hz。 (12-8)由于由于是个常数,因此共振频率差与外磁场的磁感是个常数,因此共振频率差与外磁场的磁感应强度应强度B0呈正比。这样同一磁性核,用不同磁场强呈正比。这样同一磁性核,用不同磁场强度的仪器测得的共振频率差是不同的。所以用这种度的仪器测得的共振频率差是不同的。所以用这种方法表示化学位移时,需注明外磁场的磁感应强度方法表示化学位移时,需注明外磁场的磁感应强度B0。0()2B样品标准标准样品12.2.2 化学位移的定义化学位移的定义2. 用用值

15、表示值表示化学位移定义为:化学位移定义为:该表达式也适用于脉冲该表达式也适用于脉冲NMR法。法。对于扫场法,固定的是发射机的射频频率,因此样对于扫场法,固定的是发射机的射频频率,因此样品品S和参比物和参比物R的共振频率满足:的共振频率满足:此时定义化学位移为:此时定义化学位移为:6610101SRRSRR0(1)2SSB0(1)2RRB6610101RSRSRSBBB12.2.2 化学位移的定义化学位移的定义两种表示方法可经过以下图进一步了解:两种表示方法可经过以下图进一步了解:一自旋巧合和自旋一自旋巧合和自旋裂分裂分化学位移是磁性核所处化学位移是磁性核所处化学环境的表征,化学环境的表征,但是

16、在核磁共振波但是在核磁共振波谱中化学位移等同谱中化学位移等同的核,其共振峰并的核,其共振峰并不总表现为一个单不总表现为一个单一峰。一峰。12.3 自旋自旋-自旋耦合自旋耦合12.3.1 自旋自旋耦合和耦合常数自旋自旋耦合和耦合常数Jn氢核吸收峰的裂分是由于分子中相邻氢氢核吸收峰的裂分是由于分子中相邻氢核之间发生了自旋相互作用,自旋核之核之间发生了自旋相互作用,自旋核之间的相互作用称为自旋间的相互作用称为自旋自旋巧合。自旋巧合。n自旋巧合不影响化学位移,但会使吸收自旋巧合不影响化学位移,但会使吸收峰发生裂分,使谱线增多,简称自旋裂峰发生裂分,使谱线增多,简称自旋裂分。分。12.3.1 自旋自旋耦

17、合和耦合常数自旋自旋耦合和耦合常数J二巧合常数二巧合常数n自旋巧合产生峰裂分后,裂分峰之间的间距称自旋巧合产生峰裂分后,裂分峰之间的间距称为巧合常数,用为巧合常数,用J表示,单位为表示,单位为Hz。n J 值大小表示氢核间相互巧协作用的强弱。与值大小表示氢核间相互巧协作用的强弱。与化学位移不同,不因外磁场的变化而变化,受化学位移不同,不因外磁场的变化而变化,受外界条件的影响也很小。巧合常数有以下规律:外界条件的影响也很小。巧合常数有以下规律:n1J 值的大小与值的大小与B0无关。影响无关。影响J值大小的主值大小的主要要素是原子核的磁性和分子构造及构象。因要要素是原子核的磁性和分子构造及构象。因

18、此,巧合常数是化合物分子构造的属性。此,巧合常数是化合物分子构造的属性。n2简单自旋巧合体系简单自旋巧合体系J值等于多重峰的间距,值等于多重峰的间距,复杂自旋巧合体系需求经过复杂计算求得。复杂自旋巧合体系需求经过复杂计算求得。n超越三个化学键的超越三个化学键的J耦合普通较弱。耦合普通较弱。 12.3.1 自旋自旋耦合和耦合常数自旋自旋耦合和耦合常数J12.3.2 自旋自旋耦合分裂的规律自旋自旋耦合分裂的规律 n由于临近核的耦协作用,由于临近核的耦协作用,NMR谱线发生分裂。谱线发生分裂。在一级近似下,谱线分裂的数目在一级近似下,谱线分裂的数目N与临近核的与临近核的自旋量子数自旋量子数I和核的数

19、目和核的数目n有如下关系:有如下关系:n当当I = 1/2时,时,N = n+1,称为,称为“n+1规律。谱规律。谱线强度之比遵照二项式展开式的系数比,线强度之比遵照二项式展开式的系数比,n为为引起耦合分裂的核数。下面以引起耦合分裂的核数。下面以“CH2CH3基团的基团的1H NMR谱线分裂情况为例进展阐明。谱线分裂情况为例进展阐明。 21NnI2. 自旋裂分峰数目及强度自旋裂分峰数目及强度1化学环境完全一样的原子,虽然它们有很强的巧协化学环境完全一样的原子,虽然它们有很强的巧协作用,但无裂分景象。作用,但无裂分景象。 例:例:-CH3不发生裂分不发生裂分2分子中化学位移一样的氢核称为化学等价

20、核;把化分子中化学位移一样的氢核称为化学等价核;把化学位移一样,核磁性也一样的称为磁等价核。磁等价学位移一样,核磁性也一样的称为磁等价核。磁等价核之间虽有巧协作用,但无裂分景象,在核之间虽有巧协作用,但无裂分景象,在NMR谱图谱图中为单峰。中为单峰。 例如:例如:Cl-CH2-CH2-Cl 分子中,分子中, -CH2上的氢核上的氢核皆是磁等价核,出现的信号强度相当于皆是磁等价核,出现的信号强度相当于4个个 H 核的单核的单峰峰 化学位移一样,巧合常数也一样,磁等价核一定化学位移一样,巧合常数也一样,磁等价核一定是化学等价核是化学等价核12.3.2 自旋自旋耦合分裂的规律自旋自旋耦合分裂的规律

21、n 磁不等价核之间才干发生自旋巧合裂分。如下情磁不等价核之间才干发生自旋巧合裂分。如下情况是磁不等价况是磁不等价 氢核氢核n A:化学环境不一样的氢核;:化学环境不一样的氢核;n B:与不对称碳原子相连的:与不对称碳原子相连的-CH2上的氢核上的氢核n C:固定在环上的:固定在环上的-CH2中的氢核;中的氢核;n D:单键带有双键性质时,会产生磁不等价氢:单键带有双键性质时,会产生磁不等价氢核核n E:单键不能自在旋转时,也会产生磁不等价:单键不能自在旋转时,也会产生磁不等价氢核。氢核。12.3.2 自旋自旋耦合分裂的规律自旋自旋耦合分裂的规律 3一组一样氢核自旋裂分峰数目由相邻氢核数目一组一

22、样氢核自旋裂分峰数目由相邻氢核数目n 决议决议 裂分峰数目遵守裂分峰数目遵守n+1规律规律相邻相邻n个个H,裂分成,裂分成n+1峰峰 氢核相邻一个氢核相邻一个H原子,原子,H核自旋方向有两种,两种自旋取向方核自旋方向有两种,两种自旋取向方式式 顺着磁场方向,顺着磁场方向,反着磁场方向反着磁场方向 氢核相邻两个氢核相邻两个H原子,原子,H核自旋方向有四种,四种自旋取向方核自旋方向有四种,四种自旋取向方式式 1/4 1/4 1/4 1/4 氢核相邻三个氢核相邻三个H原子,原子,H核裂分为四重峰。强度比为核裂分为四重峰。强度比为1 3 3 1-CH2的这四种取向对临近的这四种取向对临近H 峰影响,峰

23、影响,裂分成三重峰,强度比为裂分成三重峰,强度比为12 11/212.3.2 自旋自旋耦合分裂的规律自旋自旋耦合分裂的规律 4裂分峰之间的峰面积或峰强度之比符合二项展开式裂分峰之间的峰面积或峰强度之比符合二项展开式各项系数比的规律。各项系数比的规律。a+bn n为相邻氢核数为相邻氢核数n=1 a+b1 11n=2 a+b2 12 1n=3 a+b3 133 15氢核临近有两组巧合程度不等的氢核临近有两组巧合程度不等的H 核时,其中一组核时,其中一组有有n个,另一组有个,另一组有n+1个,那么这组个,那么这组H 核受两组核受两组 H 核自核自旋巧协作用,谱线裂分成旋巧协作用,谱线裂分成(n+1)

24、(n+1)重峰。重峰。12.3.2 自旋自旋耦合分裂的规律自旋自旋耦合分裂的规律 n1. 电子构造对耦合常数的影响电子构造对耦合常数的影响n(1). 核周围电子密度对耦合常数的影响核周围电子密度对耦合常数的影响 n电子密度添加,传送耦合的才干加强,耦电子密度添加,传送耦合的才干加强,耦合常数增大。原子序数添加,核周围电子合常数增大。原子序数添加,核周围电子密度也添加,耦合常数也增大。密度也添加,耦合常数也增大。n(2). 化学键对耦合常数的影响化学键对耦合常数的影响n相隔化学键数目多,耦合常数小;多重键相隔化学键数目多,耦合常数小;多重键耦合常数值大;相隔超越三个化学键的远耦合常数值大;相隔超

25、越三个化学键的远程耦合可以忽略不计。程耦合可以忽略不计。 12.3.3 耦合常数与分子构造的关系耦合常数与分子构造的关系 n2. 几何构造对耦合常数的影响几何构造对耦合常数的影响n普通地,键长越长耦合越弱。普通地,键长越长耦合越弱。n其中其中nJ表示经过表示经过n个化学键相连的两个核个化学键相连的两个核之间的耦合常数,之间的耦合常数,K值取决于相互耦合核的值取决于相互耦合核的种类和耦合途径中化学键的长度和性质。种类和耦合途径中化学键的长度和性质。 n而键角与耦合常数的关系那么为:而键角与耦合常数的关系那么为:n式中式中为两个为两个CCH平面的夹角即二面平面的夹角即二面角,角,A、B、C为与分子

26、构造有关的常数。为与分子构造有关的常数。 12.3.3 耦合常数与分子构造的关系耦合常数与分子构造的关系 1.30 cos0.13nJK3coscos2HHJABCn12.4.1 谱仪的根本组件谱仪的根本组件n磁体:产生强的静磁场。磁体:产生强的静磁场。n射频源:用来激发核磁能级之间的跃迁。射频源:用来激发核磁能级之间的跃迁。n探头:位于磁体中心的圆柱形探头作为探头:位于磁体中心的圆柱形探头作为NMR信信号检测器,是号检测器,是NMR谱仪的中心部件。样品管放置谱仪的中心部件。样品管放置于探头内的检测线圈中。于探头内的检测线圈中。n接纳机:用于接纳微弱的接纳机:用于接纳微弱的NMR信号,并放大变

27、信号,并放大变成直流的电信号。成直流的电信号。n匀场线圈:用来调整所加静磁场的均匀性,提高匀场线圈:用来调整所加静磁场的均匀性,提高谱仪的分辨率。谱仪的分辨率。n计算机系统:用来控制谱仪,并进展数据显示和计算机系统:用来控制谱仪,并进展数据显示和处置。处置。 12.4 核磁共振谱仪核磁共振谱仪n把射频场延续不断地施加到样品上,即用把射频场延续不断地施加到样品上,即用延续波激发自旋系统。延续波激发自旋系统。 12.4.2 延续波延续波NMR谱仪谱仪nNMR信号观测系统:包括射频激发单元、信号观测系统:包括射频激发单元、探头、接纳系统等。探头、接纳系统等。n稳定磁场系统:包括电源、稳场系统等,稳定

28、磁场系统:包括电源、稳场系统等,用来提高磁场强度的稳定性,从而提高谱用来提高磁场强度的稳定性,从而提高谱线的反复性。线的反复性。 n磁场均匀化系统:包括匀场系统、样品旋磁场均匀化系统:包括匀场系统、样品旋转系统等,主要用来提高仪器的分辨率。转系统等,主要用来提高仪器的分辨率。 n此外,此外,NMR谱仪还经常配备有双共振系统谱仪还经常配备有双共振系统和变温系统等。和变温系统等。 12.4.2 延续波延续波NMR谱仪谱仪n在延续波谱仪上加脉冲发生器和计算机数据采集在延续波谱仪上加脉冲发生器和计算机数据采集处置系统,就构成了处置系统,就构成了PFT NMR谱仪。谱仪。 12.4.3 脉冲傅里叶变换脉

29、冲傅里叶变换NMR谱仪谱仪 nPFT NMR谱仪包含以下三大部分:谱仪包含以下三大部分:nNMR信号观测系统:包括脉冲发生器、射信号观测系统:包括脉冲发生器、射频系统、探头、接纳系统、计算机控制和频系统、探头、接纳系统、计算机控制和数据处置系统。数据处置系统。 n稳定磁场系统:与延续波稳定磁场系统:与延续波NMR谱仪根本一谱仪根本一样。样。n磁场均匀化系统:与延续波磁场均匀化系统:与延续波NMR谱仪根本谱仪根本一样。一样。 12.4.3 脉冲傅里叶变换脉冲傅里叶变换NMR谱仪谱仪 n分辨率:有相对和绝对分辨率,表征波谱分辨率:有相对和绝对分辨率,表征波谱仪区分两个相邻共振信号的才干,即可以仪区

30、分两个相邻共振信号的才干,即可以察看到两个相邻信号察看到两个相邻信号1和和2各自独立谱各自独立谱峰的才干,以最小频率间隔峰的才干,以最小频率间隔|12|表示。表示。n稳定性:包括频率稳定性和分辨率稳定性。稳定性:包括频率稳定性和分辨率稳定性。衡量方法是延续记录相隔一定时间的两次衡量方法是延续记录相隔一定时间的两次扫描,丈量其偏向。扫描,丈量其偏向。 n灵敏度:分为相对灵敏度和绝对灵敏度。灵敏度:分为相对灵敏度和绝对灵敏度。在外磁场一样、核数目一样及其他条件一在外磁场一样、核数目一样及其他条件一样时,以某核灵敏度为参比,其他核的灵样时,以某核灵敏度为参比,其他核的灵敏度与之相比称为相对灵敏度。敏

31、度与之相比称为相对灵敏度。 12.4.4 波谱仪的三大技术目的波谱仪的三大技术目的 n超导超导NMR谱仪向高磁场方向开展谱仪向高磁场方向开展n探头的改良探头的改良 n场频联锁技术场频联锁技术nLC-NMR联用技术联用技术n微成像和医用谱仪微成像和医用谱仪12.4.5 NMR谱仪的近期进展谱仪的近期进展n12.5.1 核磁共振氢谱的特点核磁共振氢谱的特点n质子的磁旋比质子的磁旋比较大,天然丰度为较大,天然丰度为99.98,其其NMR信号的绝对灵敏度是一切磁性核中信号的绝对灵敏度是一切磁性核中最大的。最大的。n质子是有机化合物中最常见的原子核,质子是有机化合物中最常见的原子核,1H NMR谱在有机

32、化合物构造解析中最常用。谱在有机化合物构造解析中最常用。n化学位移化学位移数值反映质子的化学环境。数值反映质子的化学环境。n谱峰面积与其代表的质子数目呈正比。谱峰面积与其代表的质子数目呈正比。 12.5 一维核磁共振氢谱一维核磁共振氢谱n二乙基丙二酸二乙基丙二酸CH2(COOCH2CH3)2,从低场到高场共有,从低场到高场共有三组峰:三组峰: 4.2的四重峰是亚甲基的共振信号,的四重峰是亚甲基的共振信号, 3.3的单的单峰是与羰基相连的碳原子上氢的共振信号,峰是与羰基相连的碳原子上氢的共振信号, 1.2的三重的三重峰那么是甲基的共振信号。它们之间峰面积之比峰那么是甲基的共振信号。它们之间峰面积

33、之比(即积分即积分曲线高度之比曲线高度之比)为为2:1:3,等于相应三个基团的质子数之比。,等于相应三个基团的质子数之比。 12.5.1 核磁共振氢谱的特点核磁共振氢谱的特点n化合物中,质子不是孤立存在,其周围还化合物中,质子不是孤立存在,其周围还衔接着其他的原子或基团,它们彼此之间衔接着其他的原子或基团,它们彼此之间的相互作用影响质子周围的电子云密度,的相互作用影响质子周围的电子云密度,从而使吸收峰向低场或高场挪动。从而使吸收峰向低场或高场挪动。n影响质子化学位移的要素主要有:诱导效影响质子化学位移的要素主要有:诱导效应、共轭效应、磁各向异性效应、范德华应、共轭效应、磁各向异性效应、范德华效

34、应、溶剂效应和氢键效应等。效应、溶剂效应和氢键效应等。n其中诱导效应、共轭效应、磁各向异性效其中诱导效应、共轭效应、磁各向异性效应和范德华效应为分子内作用。应和范德华效应为分子内作用。n溶剂效应为分子间作用,氢键效应那么在溶剂效应为分子间作用,氢键效应那么在分子内和分子间都会产生。分子内和分子间都会产生。 12.5.2 氢谱中影响化学位移的主要要素氢谱中影响化学位移的主要要素n诱导效应诱导效应n1H核受一个或几个电负性较强原子或基团的拉核受一个或几个电负性较强原子或基团的拉电子作用,那么周围的电子云密度降低,屏蔽效电子作用,那么周围的电子云密度降低,屏蔽效应降低,化学位移值增大,吸收峰左移。应

35、降低,化学位移值增大,吸收峰左移。n假设假设1H核与一个或几个给电子基团衔接,那么核与一个或几个给电子基团衔接,那么其周围的电子云密度添加,屏蔽效应添加,化学其周围的电子云密度添加,屏蔽效应添加,化学位移值减小,吸收峰右移。位移值减小,吸收峰右移。 n诱导效应还与取代基的数目以及取代基与观测核诱导效应还与取代基的数目以及取代基与观测核的间隔大小有关。的间隔大小有关。 12.5.2 氢谱中影响化学位移的主要要素氢谱中影响化学位移的主要要素12.5.2 氢谱中影响化学位移的主要要素氢谱中影响化学位移的主要要素n共轭效应共轭效应n电负性较强的原子存在并以单键方式衔接到双键电负性较强的原子存在并以单键

36、方式衔接到双键上,由于发生上,由于发生p-共轭,电子云自电负性原子向共轭,电子云自电负性原子向键方向挪动,使键方向挪动,使键上相连的键上相连的1H电子云密度添电子云密度添加,因此加,因此降低,共振吸收移向高场。降低,共振吸收移向高场。n电负性较强的原子以不饱和键的方式衔接,且产电负性较强的原子以不饱和键的方式衔接,且产生生-共轭,那么电子云将移向电负性原子,使共轭,那么电子云将移向电负性原子,使键上衔接的键上衔接的1H电子云密度降低,因此电子云密度降低,因此变大,变大,共振吸收移向高场。共振吸收移向高场。 12.5.2 氢谱中影响化学位移的主要要素氢谱中影响化学位移的主要要素n磁各向异性效应:

37、假设分子具有多重键或共轭多磁各向异性效应:假设分子具有多重键或共轭多重键,在外磁场作用下,重键,在外磁场作用下,电子会沿着分子的某电子会沿着分子的某一方向流动,它对临近的质子附加一个各向异性一方向流动,它对临近的质子附加一个各向异性的磁场,使某些位置的质子处于该基团的屏蔽区,的磁场,使某些位置的质子处于该基团的屏蔽区,值移向高场,而另一些位置的质子处于该基团的值移向高场,而另一些位置的质子处于该基团的去屏蔽区,去屏蔽区,值移向低场。值移向低场。n诱导效应经过化学键传送,而磁各向异性效应那诱导效应经过化学键传送,而磁各向异性效应那么经过空间相互作用。么经过空间相互作用。 n范德华效应:当两个原子

38、相互接近时,由于遭到范德华效应:当两个原子相互接近时,由于遭到范德华力作用,电子云相互排斥,导致原子核周范德华力作用,电子云相互排斥,导致原子核周围电子云密度降低,屏蔽减小,谱线向低场挪动,围电子云密度降低,屏蔽减小,谱线向低场挪动,这种效应称为范德华效应。这种效应称为范德华效应。12.5.2 氢谱中影响化学位移的主要要素氢谱中影响化学位移的主要要素n氢键:氢的化学位移对氢键很敏感。当分子构成氢键:氢的化学位移对氢键很敏感。当分子构成氢键后,由于静电场的作用,使氢外围电子云密氢键后,由于静电场的作用,使氢外围电子云密度降低而去屏蔽,度降低而去屏蔽,值添加,也就是说,无论是分值添加,也就是说,无

39、论是分子内还是分子间氢键的构成都使氢遭到去屏蔽作子内还是分子间氢键的构成都使氢遭到去屏蔽作用。用。 n溶剂效应:同一化合物在不同溶剂中的化学位移溶剂效应:同一化合物在不同溶剂中的化学位移会有所差别,这种由于溶质分子遭到不同溶剂影会有所差别,这种由于溶质分子遭到不同溶剂影响而引起的化学位移变化。响而引起的化学位移变化。12.5.2 氢谱中影响化学位移的主要要素氢谱中影响化学位移的主要要素n 同碳耦合常数:衔接在同一碳原子上的两个磁同碳耦合常数:衔接在同一碳原子上的两个磁不等价质子之间的耦合常数称为同碳耦合常数。不等价质子之间的耦合常数称为同碳耦合常数。通常用通常用2J或或 2JH-H (J同同)

40、来表示,普通为负值,变来表示,普通为负值,变化范围较大。化范围较大。n邻碳耦合常数:邻碳耦合是相邻碳上质子经过邻碳耦合常数:邻碳耦合是相邻碳上质子经过3个化学键的耦合,其耦合常数用个化学键的耦合,其耦合常数用3J或或J邻表示。邻表示。3J普通为正值,大小通常在普通为正值,大小通常在016 Hz之间。之间。n芳环及芳环上氢的耦合:苯及苯的衍生物中邻、芳环及芳环上氢的耦合:苯及苯的衍生物中邻、间、对位氢的耦合常数是不同的。邻位耦合常数间、对位氢的耦合常数是不同的。邻位耦合常数比较大,普通比较大,普通6 10 Hz (3键键),间位,间位1 3 Hz (4键键),对位耦合很小,在对位耦合很小,在0

41、1 Hz (5键键)。n 12.5.3 氢谱中耦合常数的特点氢谱中耦合常数的特点n 远程耦合:经由远程耦合:经由3个以上化学键的核间耦合称为个以上化学键的核间耦合称为远程耦合。普通情况下,饱和化合物中远程耦合远程耦合。普通情况下,饱和化合物中远程耦合常数很小常数很小(1 Hz),可以忽略。,可以忽略。 n常见的远程耦合有:芳环和杂芳环上质子的耦合;常见的远程耦合有:芳环和杂芳环上质子的耦合;折线型耦合折线型耦合 n 氢和其他核的耦合:质子和其他磁性核如氢和其他核的耦合:质子和其他磁性核如13C、19F、31P的耦合常会遇到。的耦合常会遇到。12.5.3 氢谱中耦合常数的特点氢谱中耦合常数的特点

42、n一级1H NMR谱具有以下特征信息:n吸收峰的组数,代表分子中处于不同化学环境的质子种类。n从谱图中可直接得到J和值。各组峰中心为该组质子的化学位移,其数值阐明分子中基团的情况;各峰之间的裂距(相等)为耦合常数J,其数值与化学构造亲密相关。n各组峰的分裂符合n+1规律,分裂数目阐明各基团的衔接关系,分裂后各组峰强度比符合(a+b)n展开式系数比。n吸收峰的面积与产生该吸收峰的质子数呈正比。12.5.4 氢谱的解析氢谱的解析n分析图谱的普通步骤为:n1. 检查谱图能否符合规那么: n2. 标识杂质峰、溶剂峰、旋转边带等非待测样品的信号。 n3. 计算不饱和度。 n4. 确定各组峰代表的质子数。

43、 n5. 推出能够的构造单元。 n6. 识别谱中的一级裂分谱,验证J值。n7. 解析高级谱, n8. 结合其他分析方法数据推导化合物的构造。n9. 仔细核对各组信号的化学位移和耦合常数。 12.5.4 氢谱的解析氢谱的解析12.6 一维核磁共振碳谱一维核磁共振碳谱12.6.1 13C NMR的特点的特点1化学位移范围宽化学位移范围宽 2可检测不与氢相连的碳的共振可检测不与氢相连的碳的共振 吸收峰吸收峰 3灵敏度低,耦合复杂灵敏度低,耦合复杂 413C核的自旋晶格弛豫时间核的自旋晶格弛豫时间T1较长。较长。5谱峰强度不与碳原子数呈正比谱峰强度不与碳原子数呈正比 概述:核磁矩:1H=2.79270

44、; 13C=0.70216磁旋比为质子的1/4;相对灵敏度为质子的1/5600;H0EI=21I=21H splittingC splitting12.6.2 碳谱中影响化学位移的主要要素碳谱中影响化学位移的主要要素n1. 碳的轨道杂化碳的轨道杂化nc值受碳原子杂化的影响,其次序与值受碳原子杂化的影响,其次序与H平平行,普通情况下,屏蔽常行,普通情况下,屏蔽常数数 。 n2. 诱导效应诱导效应n3. 空间效应:空间效应:13C化学位移对分子的几何化学位移对分子的几何外形非常敏感,分子的空间构型对其影响外形非常敏感,分子的空间构型对其影响很大。相隔几个键的碳,假设它们的空间很大。相隔几个键的碳,

45、假设它们的空间间隔非常近,将相互发生剧烈的影响。间隔非常近,将相互发生剧烈的影响。 32(sp ) (sp) (sp )12.6.2 碳谱中影响化学位移的主要要素碳谱中影响化学位移的主要要素n4. 共轭效应共轭效应n5. 电场效应:带电基团引起的屏蔽作用,如解离电场效应:带电基团引起的屏蔽作用,如解离后的羧基、质子化的氨基等。普通说来,基团质后的羧基、质子化的氨基等。普通说来,基团质子化后,其子化后,其和和碳向高场位移约碳向高场位移约 0.15 4,而,而 和和碳的位移小于碳的位移小于 1。 12.6.2 碳谱中影响化学位移的主要要素碳谱中影响化学位移的主要要素n6. 重原子效应:电负性取代基

46、对被取代的脂肪碳重原子效应:电负性取代基对被取代的脂肪碳的屏蔽影响主要为诱导效应。的屏蔽影响主要为诱导效应。n7. 同位素效应:分子中的质子被其重同位素氘同位素效应:分子中的质子被其重同位素氘(2H)取代后,由于平均电子激发能的添加,导致取代后,由于平均电子激发能的添加,导致相连碳的化学位移值减小,称为同位素效应。相连碳的化学位移值减小,称为同位素效应。n8. 分子内氢键分子内氢键n9. 介质效应介质效应 12.6.3 碳谱中的耦合景象碳谱中的耦合景象13C-13C13C-13C巧合的几率很小巧合的几率很小13C13C天然丰度天然丰度1.1%1.1%;13C- 1H13C- 1H巧合;巧合常数

47、巧合;巧合常数1JCH1JCH:100-250 Hz100-250 Hz;峰裂分;谱图复杂;峰裂分;谱图复杂去偶方法:去偶方法:(1)(1)质子噪声去偶或宽带去偶质子噪声去偶或宽带去偶(proton noise decoupling or boradband decoupling) (proton noise decoupling or boradband decoupling) : 采用宽频带照射,使氢质子饱和;采用宽频带照射,使氢质子饱和; 去偶使峰合并,强度添加去偶使峰合并,强度添加(2)(2)质子偏共振去偶:识别碳原子类型;质子偏共振去偶:识别碳原子类型;弛豫:弛豫: 13C 13C的

48、弛豫比的弛豫比1H1H慢,可达数分钟;采用慢,可达数分钟;采用PFT-NMRPFT-NMR可测定,提供空间位阻、各向异性、分子可测定,提供空间位阻、各向异性、分子大小、外形等信息;大小、外形等信息;12.6.4 碳谱的解析碳谱的解析(1). 由分子式计算出不饱和度。由分子式计算出不饱和度。(2). 分析分析13C NMR的质子宽带去耦谱,识别杂质峰,排除干扰。的质子宽带去耦谱,识别杂质峰,排除干扰。(3). 由各峰的由各峰的值分析值分析sp3、sp2、sp杂化的碳各有几种,此判别杂化的碳各有几种,此判别应与不饱和度相符。应与不饱和度相符。 (4). 由偏共振谱分析与每种化学环境不同的碳直接相连

49、的氢原由偏共振谱分析与每种化学环境不同的碳直接相连的氢原子的数目,推导出能够的基团及与其相连的能够基团。子的数目,推导出能够的基团及与其相连的能够基团。(5). 综合以上分析,推导出能够的构造,进展必要的阅历计算综合以上分析,推导出能够的构造,进展必要的阅历计算以进一步验证构造。以进一步验证构造。 (6). 化合物构造复杂时,需其他谱化合物构造复杂时,需其他谱(MS,1H NMR,IR,UV)配配合解析。合解析。(7). 化合物不含氟或磷,谱峰的数目大于分子式中碳原子的数化合物不含氟或磷,谱峰的数目大于分子式中碳原子的数目,能够有以下情况存在:目,能够有以下情况存在:1异构体;异构体;2溶剂峰;溶剂峰;3杂质峰。杂质峰。12.6.4 碳谱的解析碳谱的解析12.7.1 二维二维NMR波谱概略波谱概略n1. 二维核磁共振谱的构成二维核磁共振谱的构成 n一维谱的信号是一个频率的函数,记为一维谱的信号是一个频率的函数,记为S(),共振,共振峰分布在一条频率轴上。峰分布在一条频率轴上。n二维谱信号是二个独立频率变量的函数,记为二维谱信号是二个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论