地理坐标系统与投影坐标系统_第1页
地理坐标系统与投影坐标系统_第2页
地理坐标系统与投影坐标系统_第3页
地理坐标系统与投影坐标系统_第4页
地理坐标系统与投影坐标系统_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、坐标系统又可分为两大类:地理坐标系统、投影坐标系统。弄清地球椭球体(Ellipsoid)、大地基准面(Datum)及地图投影(Projection)三者的基本概念及它们之间的关系。一、 地球椭球体(Ellipsoid)地球表面是凸凹不平,是一个无法用数学公式表达的曲面,不能作为测量和制图的基准面。假想一个扁率极小的椭圆,绕短轴旋转所形成的规则椭球体称之为地球椭球体,其表面是一个规则的数学表面,可以用数学公式表达,所以在测量和制图中就用它替代地球的自然表面。地球椭球体有长半径和短半径之分,长半径(a)即赤道半径,短半径(b)即极半径。f=(a-b)/a为椭球体的扁率,表示椭球体的扁平程度。由此可

2、见,地球椭球体的形状和大小取决于a、b、f 。因此,a、b、f被称为地球椭球体的三要素。 常见的地球椭球体如下:二、 大地基准面(Datum)不同的坐标系其实就是所采用的椭球体不同,因此椭球参数不同,原点不同,X Y Z轴不同。把地球椭球体和基准面结合起来看,如果把地球比做是"马铃薯",表面凸凹不平,而地球椭球体就好比一个"鸭蛋",那么按照前面的定义,基准面就定义了怎样拿这个"鸭蛋"去逼近"马铃薯"某一个区域的表面,X、Y、Z轴进行一定的偏移,并各自旋转一定的角度,大小不适当的时候就缩放一下"鸭蛋&quo

3、t;,这样通过如上的处理必定可以达到很好的逼近地球某一区域的表面。 因此,每个国家或地区均有各自的基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。椭球体与基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面。北京54坐标系: (BJZ54),北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以前苏联的克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。它的原点在在前苏联的普尔科沃。a属参心大地坐标系;b采用克拉索夫斯基椭球的两个几何参数;c.大地

4、原点在原苏联的普尔科沃;d采用多点定位法进行椭球定位;e高程基准为 1954年青岛验潮站求出的黄海平均海水面;f高程异常以原苏联 1955年大地水准面重新平差结果为起算数据。按我国天文水准路线推算而得。椭球坐标参数:长半轴a=6378245m;短半轴=6356863.0188m;扁率=1/298.3。缺点:1、 椭球参数有较大误差。克拉索夫斯基椭球差数与现代精确的椭球参数相比,长半轴约大109m。2、 参考椭球面与我国大地水准面存在着自西向东明显的系统性的倾斜,在东部地区大地水准面差距最大达+60m。这使得大比例尺地图反映地面的精度受到影响,同时也对观测量元素的归算提出了严格的要求。3、 几何

5、大地测量和物理大地测量应用的参考面不统一。我国在处理重力数据时采用赫尔默特19001909年正常重力公式,与这个公式相应的赫尔默特扁球不是旋转椭球,它与克拉索夫斯基椭球是不一致的,这给实际工作带来了麻烦。4、 定向不明确。椭球短半轴的指向既不是国际普遍采用的国际协议(原点)CIO(Conventional International Origin),也不是我国地极原点JYD1968.0;起始大地子午面也不是国际时间局BIH(Bureau International de I Heure)所定义的格林尼治平均天文台子午面,从而给坐标换算带来一些不便和误差。1980西安坐标系:1980年国家大地坐

6、标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇。基准面采用青岛大港验潮站19521979年确定的黄海平均海水面(即1985国家高程基准)。(1)大地原点在我国中部,具体地点是陕西省泾阳县永乐镇;(2)西安80坐标系是参心坐标系,椭球短轴Z轴平行于地球质心指向地极原点方向,大地起始子午面平行于格林尼治平均天文台子午面;X轴在大地起始子午面内与 Z轴垂直指向经度 0方向;Y轴与 Z、X轴成右手坐标系;(3)椭球参数采用IUG 1975年大会推荐的参数,因而可得西安80椭球两个最常用的几何参数为:长半轴a=6

7、378140±5(m)短半轴b=6356755.2882m扁 率=1/298.257第一偏心率平方 =0.00669438499959 第二偏心率平方=0.00673950181947椭球定位时按我国范围内高程异常值平方和最小为原则求解参数。(4)多点定位;(5)大地高程以1956年青岛验潮站求出的黄海平均水面为基准WGS-84坐标系:国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向BIH (国际时间服务机构)1984.O定义的协议地球极(CTP)方向,X轴指向BIH 1984.0的零子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系. GPS广播

8、星历是以WGS-84坐标系为根据的.WGS-84采用的椭球是国际大地测量与地球物理联合会第17届大会大地测量常数推荐值,其四个基本参数:长半径:a=6378137±2(m);地球引力和地球质量的乘积:GM=3986005×108m3s-2±0.6×108m3s-2;正常化二阶带谐系数:C20=-484.16685×10-6±1.3×10-9;地球重力场二阶带球谐系数:J2=108263×10-8地球自转角速度:=7292115×10-11rads-1±0.150×10-11rads-1

9、扁率f=0.003352810664三、 地图投影(Projection) :将球面坐标转化为平面坐标的过程便称为投影。地理坐标系是用经纬度表示球面的位置,但精确分析需要在平面上来进行,这就要将地图从三维地理坐标通过投影转换成二维平面坐标,这样的坐标系叫投影坐标系(Coordina te Projection System),它是在地理坐标系上加上投影转换参数。投影既然是一种数学变换方法,那么任何一种投影都存在一定的变形,因此可以按照变形性质将投影方法如下分类:等角投影(Conformal Projection)、等积投影(Equal Area Projection)、等距投影(Equidis

10、tant Projection)、等方位投影(True-direction Projection)四种。如果按照投影的构成方法分类又可分为方位、圆柱、圆锥投影三种,在上述三种投影中由于几何面与球面的关系位置不同,又分为正轴、横轴和斜轴三种。如图46:墨卡托(Mercator)投影 :是一种"等角正切圆柱投影"。假设地球被围在一个中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的"墨卡托投影"绘制出的地图。 Google们为什么选择墨卡托投影? 墨卡托投影的”等角”特

11、性,保证了对象的形状的不变行,正方形的物体投影后不会变为长方形。”等角”也保证了方向和相互位置的正确性,因此在航海和航空中常常应用,而Google们在计算人们查询地物的方向时不会出错。 墨卡托投影的”圆柱”特性,保证了南北(纬线)和东西(经线)都是平行直线,并且相互垂直。而且经线间隔是相同的,纬线间隔从标准纬线(此处是赤道,也可能是其他纬线)向两级逐渐增大。 但是,”等角”不可避免的带来的面积的巨大变形,特别是两极地区,明显的如格陵兰岛比实际面积扩大了N倍。 为什么是圆形球体,而非椭球体? 这说来简单,仅仅是由于实现的方便,和计算上的简单,精度理论上差别0.33%之内,特别是比例尺越大,地物更

12、详细的时候,差别基本可以忽略。高斯-克吕格投影:高斯是德国杰出的数学家、测量学家。高斯-克吕格尔投影是德国的 C.F.高斯于1822年提出的,后经德国的克吕格尔(J.H.L.Krüger)于1912年加以扩充而完善。他提出的横椭圆柱投影是一种正形投影。它是将一个横椭圆柱套在地球椭球体上,如下图所示:椭球体中心O在椭圆柱中心轴上,椭球体南北极与椭圆柱相切,并使某一子午线与椭圆柱相切。此子午线称中央子午线。然后将椭球体面上的点、线按正形投影条件投影到椭圆柱上,再沿椭圆柱N、S点母线割开,并展成平面,即成为高斯投影平面。在此平面上:中央子午线是直线,其长度不变形,离开中央子午线的其他子午线

13、是弧形,凹向中央子午线。离开中央子午线越远,变形越大。投影后赤道是一条直线,赤道与中央子午线保持正交。离开赤道的纬线是弧线,凸向赤道。高斯投影可以将椭球面变成平面,但是离开中央子午线越远变形越大,这种变形将会影响测图和施工精度。为了对长度变形加以控制,测量中采用了限制投影宽度的方法,即将投影区域限制在靠近中央子午线的两侧狭长地带。这种方法称为分带投影。投影带宽度是以相邻两个子午线的经差来划分。有6°带、3°带等不同投影方法。6°带投影是从英国格林尼治子午线开始,自西向东,每隔6°投影一次。这样将椭球分成60个带,编号为160带,如下图所示:各带中央子午线

14、经度(L)可用下式计算:  式中n为6°带的带号。已知某点大地经度L,可按下式计算该点所属的带号:有余数时,为n的整数商+1。3°带是在6°带基础上划分的,其中央子午线在奇数带时与6°带中央子午线重合,每隔3°为一带,共120带,各带中央子午线经度(L)为:式中n为3°带的带号。我国幅员辽阔,含有11个6°带,即从1323带(中央子午线从75°135°),21个3°带,从2545带。北京位于6°带的第20带,中央子午线经度为117°。高斯-克吕格投影的基本知识:我国

15、大中比例尺地图均采用高斯-克吕格投影Gauss Kruger,其通常是按6度和3度分带投影,1:2.5万1:50万比例尺地形图采用经差6度分带,1:1万比例尺的地形图采用经差3度分带。UTM投影 全称为"通用横轴墨卡托投影",是一种"等角横轴割圆柱投影",椭圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条相割的经线上没有变形,而中央经线上长度比0.9996。UTM投影是为了全球战争需要创建的,美国于1948年完成这种通用投影系统的计算。与高斯-克吕格投影相似,该投影角度没有变形,中央经线为直线,且为投影的对称轴,中央经线的比例因子取0.9996是

16、为了保证离中央经线左右约330km处有两条不失真的标准经线。UTM投影分带方法与高斯-克吕格投影相似,是自西经180°起每隔经差6度自西向东分带,将地球划分为60个投影带。我国的卫星影像资料常采用UTM投影。两者异同 高斯-克吕格(Gauss-Kruger)投影与UTM投影(Universal Transverse Mercator,通用横轴墨卡托投影)都是横轴墨卡托投影的变种,目前一些国外的软件或国外进口仪器的配套软件往往不支持高斯-克吕格投影,但支持UTM投影,因此常有把UTM投影当作高斯-克吕格投影的现象。 从投影几何方式看,高斯-克吕格投影是"等角横切圆柱投影",投影后中央经线保持长度不变,即比例系数为1;UTM投影是"等角横轴割圆柱投影",圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条割线上没有变形,中央经线上长度比0.9996,该投影将地球划分为60个投影带,每带经差为6度,已被许多国家作为地形图的数学基础。 从计算结果看,UTM投影与高斯投影的主要区别在南北格网线的比例系数上,高斯-克吕格投影的中央经线投影后保持长度不变,即比例系数为1,而UTM投影的比例系数为0.9996。UTM投影沿每一条南北格网线比例系数为常数,在东西

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论