三角函数定义_第1页
三角函数定义_第2页
三角函数定义_第3页
三角函数定义_第4页
三角函数定义_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1.2.1 三角函数的定义三角函数的定义学习目标:学习目标:1、理解任意角的三角函数的定义;、理解任意角的三角函数的定义;2、掌握三角函数(正弦、余弦、正切)、掌握三角函数(正弦、余弦、正切)的定义域;的定义域;3、学会运用任意角三角函数的定义求、学会运用任意角三角函数的定义求相关角的三角函数值;相关角的三角函数值;4、掌握三角函数在各象限的符号。、掌握三角函数在各象限的符号。【问题问题1 1】锐角三角函数是怎样定义的?锐角三角函数是怎样定义的?对边邻边sin= cos=tan=斜边对边斜边邻边邻边对边 在直角三角形在直角三角形abc中,角中,角c是直角,角是直角,角a为锐为锐角,则用角角,则

2、用角a的的对边对边bc,邻边邻边ac和和斜边斜边ab之间的之间的比值来定义角比值来定义角a的三角函数的三角函数.acb【问题问题2 2】锐角三角函数如何用点锐角三角函数如何用点p p的坐标表示?的坐标表示?yrxryxsin=cos=tan=(1 1)当点当点p p位置改变时,三个函数值有无变化?位置改变时,三个函数值有无变化?(2 2)当角的大小改变时,三个函数值有无变化?)当角的大小改变时,三个函数值有无变化?【问题问题3 3】【问题【问题4 4】现在角的范围扩大了在这样的】现在角的范围扩大了在这样的环境下,你认为,对于任意角环境下,你认为,对于任意角,sinsin,coscos,tant

3、an怎样来定义好呢?怎样来定义好呢?22yrxryxrxysin=cos=tan=学生探究活动:小组讨学生探究活动:小组讨论给出任意角的三角函论给出任意角的三角函数定义。数定义。ryrxxycscseccot角 的其他三种函数余割:正割:余切:yrxryxsin =cos =tan =正弦余弦正切,三角函数三角函数定义域定义域)(2zkksincostanrr【问题【问题5 5】三角函数的自变量是什么?根据】三角函数的自变量是什么?根据三角函数定义,确定它们的定义域。三角函数定义,确定它们的定义域。的六个三角函数值。),求,(终边过点已知例3-2. 1p解:因为x=2,y=-3,所以 于是 1

4、322yxr313csc,213sec32cot,23tan13132132cos13133133sinxyrxry320,2例 :求, 的六个三角函数值。解:(解:(1)sin0=0, cos0=1, tan0=0, csc0不存在,不存在,sec0=1, cot0不存在;不存在; (2)sin =0, cos =-1, tan =0, csc 不存在,不存在, sec =-1, cot 不存在不存在; (3)sin =-1, cos =0, tan 不存在不存在, csc =-1, sec 不存在不存在, cot =-1;232323232323例3:已知角 终边过点p(a,-3a)(a

5、0),求角 的六个三角函数值。解:因为解:因为x=a,y=-3a, 所以所以aayxr1010222分情况讨论:分情况讨论:a0和和a0两种情况两种情况【问题【问题6 6】已知角的三角函数值,你能确定已知角的三角函数值,你能确定终边位置吗?终边位置吗?学生探究活动:小组讨学生探究活动:小组讨论分析不同象限这三个论分析不同象限这三个常用三角函数值的符号常用三角函数值的符号2sin=cos=tan= |,yrxryxkkz 正弦余弦正切,图形展示结论图形展示结论形象记忆形象记忆cos的符号sin的符号tan的符号总结归纳总结归纳口诀记忆口诀记忆一全正、二正弦、三正切、四余弦一全正、二正弦、三正切、四余弦0010(1)cos260 (2)sin() (3)tan( 672 20 ) (4)tan.33;例例4:确定下列各三角函数值的符号:确定下列各三角函数值的符号:正正负负负负正正1.三角函数的定义三角函数的定义cossintanxryryx角 的余弦:角 的正弦:角 的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论