光纤非线性效应及对光纤通信的影响_第1页
光纤非线性效应及对光纤通信的影响_第2页
光纤非线性效应及对光纤通信的影响_第3页
光纤非线性效应及对光纤通信的影响_第4页
光纤非线性效应及对光纤通信的影响_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、光线非线性效应及其对光纤通信系统的影响摘 要:随着科技的飞速发展、信息时代的到来,信息的传输变得越来越重要。光纤作为众多传输介质中的一种有着其它介质不可替代的优越性。它传输容量大、传输带宽宽、抗干扰能力强。然而,由于光纤中的损耗和色散的限制,使得光纤通信的发展受到了 制约。如 果要获得更长的传输距离,则要加大入纤光功率,这样就引起了光纤非线性效应的产生。本文详细地讨论了几种重要的光纤非线性效应,如受激布里渊散射(SBS)、受激喇曼散射(SRS)、自相位调制(SPM)、交叉相 位调制(XPM )、 克尔效应(Kerr)、超短脉冲孤立子(S oliton )等现象。并对其在光纤通信中的应用进行了展

2、望关键字:光纤非线性效应、散射、阈值、光功率光纤的非线性效应尽管用于光纤的玻璃材料的非线性很弱,但由于纤芯小,纤芯内场强非常高,且 作用距离长,使得光纤中的非线性效应会积累到足够的强度,导致对信号的严重十扰和对系统传输性能的限制。光纤传输的衰耗和色散与光纤长度呈线性变化的,呈线性效应,而带宽系数与光纤长度呈非线性效应。非线性效应一般在WDM系统上反映较多,在SDH系统反映 较少,因为在WDM 设备系统中,由于和波器、分波器的插入损耗较大,对 16波 系统一般相加在10dB左右,对32波系统,相加在15dB左右,因此需采用EDF A进行放大补偿,在放大光功率的同时,也使光纤中的非线性效应大大增加

3、,成为影 响系统性能,限制中继距离的主要因数之一,同时,也增加了ASE等噪声。光纤中的非线性效应包括:散射效应(受激布里渊散射SBS和受激拉曼散射SRS等)、与克尔效应相关的影响,即与折射率密切相关(自相位调制 SPM、交 义相位调制XPM、四波混频效应FWM ),其中四波混频、交义相位调制对系统 影响严重。折射率非线性变化SBS、SRS及FWM过程所引起的波长信道的增益或损耗与光信号的强度有关。这些非线性过程对某些信道提供增益而对另一些信道则产生功率损耗,从而使各个波长问产生申扰。从本质上说,任何物质都是由分子、原子等基本组成单元组成。在常温下,这些 基本组成单元在不断地作自发热运动和振动。

4、光纤中的受激布里渊散射SBS和受激拉曼散射SRS都是激光光波通过光纤介质时,被其分子振动所调制的结果,而且SB S和SRS都具有增益特性,在一定条件下,这种增益可沿光纤积累。SBS与SRS的区别在于,SBS激发的是声频支声子,SRS激发的是光频支声子。受激布里渊散 射SBS产生原理:SBS是光纤中泵浦光与声子间相互作用的结果,在使用窄谱线宽 度光源的强度调制系统中,一旦信号光功率超过受激布里渊散射SBS的门限时(SBS的门限较低,对于1550nm 的激光器,一般为78dBm ),将有很强的前向传 输信号光转化为后向传输,随着前向传输功率的逐渐饱和,使后向散射功率急剧增加。在WDM+EDFA 的

5、系统中,注入到光纤中的功率大于 SBS的门限值,会产生S BS散射。SBS对WDM系统的影响主要是引起系统通道间的申扰及信道能量的损 失。布里渊频移量在1550nm 处约为1011GHz ,当WDM系统的信道间隔(即 波长间隔)与布里渊频移量相等时,就会引起信道间的申扰,但目前的 WDM系统,在32波(包括32波)以下时,其信道间隔不小于0.8nm ,既信道间隔不小于100 GHz,可以避免由于SBS产生的信道申扰,但随着 WDM朝密集方向的发展,信 道间隔越来越小,但信道间隔靠近1011GHz时,SBS将成为信道申扰的主要因数。 此外,由于SBS会引起一部分信道功率转移到噪声上,影响功率放大

6、。目前抑制 SBS的措施通常在激光器输出端加一个低频调制信号,提高 SBS的门限值。受激拉曼散射SRS产生原理:受激拉曼散射SRS是光与硅原子振动模式问相互 作用有关的宽带效应,在任何情况下,短波长的信号总是被这种过程所衰减,同时长 波长信号得到增强。在单信道和多信道系统中都可能发生受激拉曼散射SRS。仅有一个单信道且没有线路放大器的系统中,信号功率大于1W时,功率会受到这种现象的损伤,在较宽 信道间隔的多信道系统中,较短波长信号通道由于受激拉曼散射 SRS,使得一部分光 功率转移到较长波长的信号信道中,从而可能引起信噪比性能的劣化。由于受激拉曼 散射SRS激发的是光频支声子,其产生的拉曼频移

7、量比布里渊频移量大得多,一般 在100GHz200GHz ,且门限值较大,在 1550nm 处约为27dBm , 一股情况下 不会发生。但对于 WDM 系统,随着传输距离的增长和复用的波数的增加,EDFA放大输出的光信号功率会接近27dBm , SRS产生的机率会增加。因G.653光纤的等效芯经面积小于G.652光纤,受激拉曼散射SRS门限值要 低于采用G.652光纤的系统,在G.653光纤上产生SRS的概率要大。白相位调制(SPM)自相位调制(SPM)的产生是由于本信道光功率引起的折射率非线性变化,这一非线性折射率引起与脉冲强度成正比的感生相移,因此脉冲的不同部分有不同的相 移,并由此产生脉

8、冲的喟啾SPM效应在高传输功率或高比特率的系统中更为突出SPM会增强色散的脉冲展宽效应。从而大大增加系统的功率代价。交叉相位调制(XPM)交义相位调制(XPM )的产生是由于外信道光功率引起的折射率非线性变化,导致相位变化相位正比其中第一项来源于 SPM,第二项即交义相位调制(XPM)。若E1=E2 则XPM 的效果将是SPM的两倍。因此 XPM将加剧 WDM 系统中SPM 的喟啾及相应的脉冲展宽效应。增加信道间隔可以抑制XPMDSF高速( 10Gb/s)WDM 系统中,XPM将成为一个显著的问题。四波混频(FWM)四波混频FWM亦称四声子混合,是光纤介质三阶极化实部作用产生的一种光波 间耦合

9、效应,是因不同波长的两三个光波相互作用而导致在其它波长上产生所谓混频 产物,或边带的新光波,这种互作用可能发生于多信道系统的信号之间,可以产生三 倍频、和频、差频等多种参量效应。在DWDM 系统中,当信道问距与光纤色散足够小且满足相位匹配时,四波混 频将成为非线性申扰的主要因数。当信道间隔达到 10GHz以下时,FWM对系统的 影响将最严重。四波混频FWM对DWDM系统的影响主要表现在:(1)产生新的波长,使原有 信号的光能量受到损失,影响系统的信噪比等性能; (2)如果产生的新波长与原有某 波长相同或交叠,从而产生严重的申扰。四波混频 FWM的产生要求要求各信号光 的相位匹配,当各信号光在光

10、纤的零色散附近传输时, 材料色散对相位失配的影响很 小,因而较容易满足相位匹配条件,容易产生四波混频效应。目前的DWDM系统的信道间隔一般在100GHz ,零色散导致四波混频成为主 要原因,所以,采用G.653光纤传输DWDM 系统时,容易产生四波混频效应,而 采用G.652或G.655光纤时,不易产生四波混频效应。但G.652光纤在1550nm 窗 口存口存在一定的色散,传输10G信号时,应加色散补偿,G.655光纤在1550nm 窗口的色散很小,适合10GDWDM 系统的传输。降低FWM的措施仔细选择各信道的位置,使得那些拍频项不与信道带宽范围重叠。适用于较少信 道数的WDM系统,必须仔细

11、计算信道的确切位置。增加信道间隔,增加信道之间的群速度不匹配。缺点是增加了总的系统带宽,从而要 求放大器在较宽的带宽范围内有平坦的增益谱,另外还增加了 SRS引起的代价。 增加光纤的有效截面,降低光纤中光功率密度。对于DSF使用大于1560nm的波长。这种方法的思路是:即使对于 DSF,这一范围 内也存在显著的色散量,从而可以减小 FWM的效率。这依赖于L-band的EDFA。 针对不同的波长信道引入延时,从而扰乱不同波长信道的相位关系。受激布里渊散射(SBS)受激布里渊散射(SBS)是由于光子受到声学声子的散射所产生的,形成斯托克斯 波与反斯托克斯波。SBS产生频移,只发生在很窄的线宽内,在

12、 1.55mm 处,WB=11.1GHZ。SBS在朝向光源的方向上产生增益,会引起光源不稳定。SBS阈值功率低(单波长信道:9dBm).增加光源线宽能够提高SBS阈值功率(100MHz 光源:16 dBm )SBS的增益系数gB约为4 X10-I1m/W ,且与波长无关。降低SBS的措施:1、使单信道功率保持在SBS阈值以下。2、增加光源的线宽,大于100MHz (0.1nm)。3、采用相位调制。受激喇曼散射(SRS)SRS是光子受到振动分子散射所产生的。SRS同时存在于在光传输方向或者与之 相反的方向。阈值比SBS高3个数量级,具有100nm频移间隔。SRS引起DWDM不同信道之间发生耦合,

13、导致申扰。长波长信号被短波长信号放大,引起信道功率不平衡仅当两个波长信号都处于高电平状态才会发生 SRS。色散可以减小SRS。因为这时不同信道的信号以不同的速度传播,从而减小了不同波长的脉冲在光纤中任一点处都重合的概率。波长间隔大容易产生SRS。结束语在光通信系统中,增加入纤光功率可以在增加传输距离的同时保持足够大的OSNR。实践表明这会造成各种各样的非线性问题。通常情况下,玻璃材料中的非线 性效应非常微弱。但是当光信号在光纤中传输时,由于光纤的芯径非常小,致使光纤 中光信号的功率密度很高。此外,传输光纤中的相互作用长度很长(对于LH为几白公里,对于ULH为几千公里),非线性效应的累积变得非常明显。在所有非线性效 应中,源于克尔效应的那些非线性效应,包括自相位调制( SPM)、交义相位调制(XPM )和四波混频(FWM )等最容易造成问题。SPM是某光信道激发的光纤非线 的非线性十扰。这些效应是造成传输代价的主要原因(前面的讨论中暂时忽略了传输 代价)。事实上,这些非线性效应(特别是 SPM) 一直是过去几十年长距离传输研 究的重点.性折射率对该信道本身产生的附加相位调制,XPM和FWM是某个信道受邻近信道参考资料:1光纤传输模型的数值计算研究李均,黄德修,张新亮.光电子技术与信息,2003 , 162 非线性光纤光学原理及应用 Govind P.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论