一元一次方程定义与知识点_第1页
一元一次方程定义与知识点_第2页
一元一次方程定义与知识点_第3页
一元一次方程定义与知识点_第4页
一元一次方程定义与知识点_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、编辑本段方程简介只含有一个未知数,且未知数次数是一的 整式方程 叫一元一次方程。通 常形式是kx+b=0(k , b为常数,且 kw0)。 一元一次方程属于整式方程, 即方程两边都是整式。一元指方程仅含有一个未知数,一次指未知数的次 数为1,且未知数的系数不为0。我们将ax+b=0 (其中x是未知数,a、b是已知数,并且 aw0)叫一元一次方程的标准形式。这里 a是未知数的系 数,b是常数,x的次数是1。编辑本段性质.等式的性质一:等式两边同时加一个数或减一同一个数,等式两边相等。二.等式的性质二:等式两边同时乘一个数或除以同一个数(0除外),等式两边相等。三.等式的性质三:两边都可以有未知数

2、。编辑本段元一次方程的解ax=b超准确答案!1,当aw0, b=0时,方程有唯一解,x=0;2,当aw0, bw。时,方程有唯一解, x=b/a3,当a=0, b=0时,方程有无数解4,当a=0, bw。时,方程无解例:(3x+1) /2-2= (3x-2) /10- (2x+3) /5去分母(方程两边同乘各分母的最小公倍数)5(3x+1)- 10X2=(3x-2)-2(2x+3)去括号15x+5-20=3x-2-4x-6移项15x-3x+4x=-2-6-5+20合并同类项! !16x=7系数化为1x=7/16编辑本段一元一次方程与实际问题一元一次方程牵涉到许多的实际问题,例如:工程问题、种植

3、面积问题、比赛比分问题、路程问题。从算式到方程列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写 出含有未知数的等式方程( equation)。1.4x=242.1700+150x=24503.0.52x-(1-0.52)x=80上面各方程都只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程( linear equation with one unknown )。分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。编辑本段一元一次方程的学习实践在小学会学习较浅的一元一次方程,到了初中开始深入的了解一元一次方程的解法和利用一元一次方

4、程解较难的应用题一元一次方程含工程问题油菜种植问题相遇问题(路程问题)牛吃草问题编辑本段等式等式两边乘同一个数,或除以同一个不为0的数,结果仍然相等。3x-4x=-25-20向上面那样把等式的一边的某项变号后移到另一边,叫做移项。 编辑本段配套问题解一元一次方程的步骤1 .去分母:在方程两边都乘以各分母的最小公倍数;2 .去括号:先去小括号,再去中括号,最后去大括号;3 .移项:把含有未知数的项都移到方程的一边,其他项都移到方程的 另一边;4 .合并同类项:把方程化成ax=b(a*0)的形式;5 .系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.定义:只含有一个未知数,且未

5、知数次数是一的 整式方程 叫一元一次方程。 通常形式是kx+b=0(k , b为常数,且kw0)。一般解法:L去分母 方程两边同时乘各分母的最小公倍数。2.去括号 一般先去小括号,再去中括号,最后去大括号。但顺序有时可依据情况而定使 计算简便。可根据乘法分配律。3.移项 把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号。(一般都是这样:(比方)从 5x=4x+8 得到5x - 4x=8 ;把未知数移到一起! 4. 合并同类项 将原方程化为ax=b(aw0)的形式。5.系数化一 方程两边同时除以未知数的系数。6.得出方程的解。同解方程:如果两个方程的解相同,那

6、么这两个方程叫做同解方程。方程的同解原理:1.方程的两边都加或减同一个数或同一个等式所得的方程与原方 程是同解方程。2.方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。做一元一次方程 应用颍的重要方法:L认真审题 2.分析已知和未知的量3.找一个 等量关系 4.设未知数 5列方程 6.解方程7.检(jian 三声)验 8.写出答教学设计示例教学目标1 .使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列 出一元一次方程解简单的应用题;2 .培养学生观察能力,提高他们分析问题和解决问题的能力;3 .使学生初步养成正确思考问题的良好习惯.教学重点和难点一元一次方程解简单的

7、应用题的方法和步骤.课堂教学过程设计一、从学生原有的认知结构提出问题在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次 方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方 法解应用题相比较,它有什么优越性呢?为了回答上述这几个问题,我们来看下面这个例题.例1某数的3倍减2等于某数与4的和,求某数.(首先,用算术方法解,由学生回答,教师板书)解法1: (4+2) +(3 -1)=3 .答: 某数为3.(其次,用代数方法来解,教师引导,学生口述完成 )解法2: 设某数为x,则有3x-2=x+4 .解之,得x=3.答:某数为3.纵观例1 的这两

8、种解法,很明显,算术方法不易思考,而应用设未知数,列出方程 并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们 学习运用一元一次方程解应用题的目的之一.我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提 供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成 方程.本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个 相等关系转化为方程的方法和步骤.二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤例2某面粉仓库存放的面粉运出15 %后,还剩余42 500千克,这个仓库原来有多少面粉?师生共同分析:1 .本题中给出的已

9、知量和未知量各是什么?2 .已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)3 .若设原来面粉有 x千 克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程? 上述分析过程可列表如下:解:设原来有x千克面粉,那么运出了15%x千克,由题意,得 x-15 %x=42 500, 所以x=50 000. 答:原来有 50 000 千克面粉.此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=1出重量)教师应指出:(1)这两种相等关系的表达形式与“原来重量 -运出重量=剩余重量”,虽形式上不同,但实质 是一样的,可以任意选择其中的一个相等关系来列方程;(2)例2的解方程过程较为简捷,同学应注意模仿.依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方 式,进行反馈;最后,根据学生总结的情况,教师总结如下:(1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;(2)根据题意找出能够表示应用题全部含义的一个相等关系.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论