高二数学知识点总结归纳_第1页
高二数学知识点总结归纳_第2页
高二数学知识点总结归纳_第3页
高二数学知识点总结归纳_第4页
高二数学知识点总结归纳_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高二数学知识点总结归纳202x 说到高二数学,很多同学都会说很难,确实,相对而言,高二数学是高中数学中最难的一局部,但我们一定要把知识点给吃透。 下面就是给大家带来的高二数学知识点总结,希望能帮助到大家! 空间中的平行问题 (1)直线与平面平行的判定及其性质 线面平行的判定定理:平面外一条直线与此平面内一条直线平行,那么该直线与此平面平行。 线线平行线面平行 线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。线面平行线线平行 (2)平面与平面平行的判定及其性质 两个平面平行的判定定理 (1)如果一个平面内的两条相交直线都平行于另一个平面,

2、那么这两个平面平行 (线面平行面面平行), (2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。 (线线平行面面平行), (3)垂直于同一条直线的两个平面平行, 两个平面平行的性质定理 (1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行线面平行) (2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行线线平行) 1.辗转相除法是用于求公约数的一种方法,这种算法由欧几里得在公元前年左右首先提出,因而又叫欧几里得算法. 2.所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数.假设余数不为零,那么将较小的数和余数构成新的一对数,继续

3、上面的除法,直到大数被小数除尽,那么这时的除数就是原来两个数的公约数. 3.更相减损术是一种求两数公约数的方法.其根本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比拟,并以大数减小数,继续这个操作,直到所得的数相等为止,那么这个数就是所求的公约数. 4.秦九韶算法是一种用于计算一元二次多项式的值的方法. 5.常用的排序方法是直接插入排序和冒泡排序. 6.进位制是人们为了计数和运算方便而约定的记数系统.“满进一”,就是k进制,进制的基数是k. 7.将进制的数化为十进制数的方法是:先将进制数写成用各位上的数字与k的幂的乘积之和的形式,再按照十进制数的运算规那么计算出结果

4、. 8.将十进制数化为进制数的方法是:除k取余法.即用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数就是相应的进制数. (1)定义: 对于函数y=f(x)(xd),把使f(x)=0成立的实数x叫做函数y=f(x)(xd)的零点。 (2)函数的零点与相应方程的根、函数的图象与x轴交点间的关系: 方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点。 (3)函数零点的判定(零点存在性定理): 如果函数y=f(x)在区间a,b上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a

5、,b)内有零点,即存在c(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。 二二次函数y=ax2+bx+c(a>0)的图象与零点的关系 三二分法 对于在区间a,b上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。 1、函数的零点不是点: 函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴交点的横坐标,所以函数的零点是一个数,而不是一个点.在写函数零点时,所写的一定是一个数字,而不是一个坐标。 2、对函数零

6、点存在的判断中,必须强调: (1)、f(x)在a,b上连续; (2)、f(a)·f(b)<0; (3)、在(a,b)内存在零点。 这是零点存在的一个充分条件,但不必要。 3、对于定义域内连续不断的函数,其相邻两个零点之间的所有函数值保持同号。 利用函数零点的存在性定理判断零点所在的区间时,首先看函数y=f(x)在区间a,b上的图象是否连续不断,再看是否有f(a)·f(b)<0.假设有,那么函数y=f(x)在区间(a,b)内必有零点。 四判断函数零点个数的常用方法 1、解方程法: 令f(x)=0,如果能求出解,那么有几个解就有几个零点。 2、零点存在性定理法: 利

7、用定理不仅要判断函数在区间a,b上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点。 3、数形结合法: 转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数。 函数有零点(方程有根)求参数取值常用的方法 1、直接法: 直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围。 2、别离参数法: 先将参数别离,转化成求函数值域问题加以解决。 3、数形结合法: 先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解。 分

8、层抽样 先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成假设干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的方法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。 两种方法 1.先以分层变量将总体划分为假设干层,再按照各层在总体中的比例从各层中抽取。 2.先以分层变量将总体划分为假设干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。 2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。 分层标准 (1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准

9、。 (2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。 (3)以那些有明显分层区分的变量作为分层变量。 分层的比例问题 (1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。 (2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比拟。如果要用样本资料推断总体时,那么需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。 1.几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积

10、)成比例,那么称这样的概率模型为几何概率模型,简称几何概型。 2.几何概型的概率公式:p(a)=构成事件a的区域长度(面积或体积); 试验的全部结果所构成的区域长度(面积或体积) 3.几何概型的特点:1)试验中所有可能出现的结果(根本领件)有无限多个;2)每个根本领件出现的可能性相等. 4.几何概型与古典概型的比拟:一方面,古典概型具有有限性,即试验结果是可数的;而几何概型那么是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的。这是二者的不同之处;另一方面,古典概型与几何概型的试验结果都具有等可能性,这是二者的共性。 通过以上对于几何概型的根本知识点的梳理,我们不难看出其要核是:要抓住几何概型具有无限性和等可能性两个特点,无限性是指在一次试验中,根本领件的个数可以是无限的,这是区分几何概型与古典概型的关键所在;等可能性是指每一个根本领件发生的可能性是均等的,这是解题的根本前提。因此,用几何概型求解的概率问题和古典概型的根本思路是相同的,同属于“比例

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论