水泥基材表面与界面分析概述_第1页
水泥基材表面与界面分析概述_第2页
水泥基材表面与界面分析概述_第3页
水泥基材表面与界面分析概述_第4页
水泥基材表面与界面分析概述_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、水泥基材料表面与界面分析概述Summary of cement-based materials surface and interface analyses姓名:卞周宏 学号:2014111113000986任课老师:屈君娥 课程:材料表面与界面摘要随着混凝土材料的不断发展,高性能已成为混凝土材料的主要发展趋势。高性能混凝土(HPC)作为具有高性能的新型水泥基复合材料,在工程实践中得到了越来越广泛的应用。本文通过SEM、TEM、XPS、AES、SIMS等现代分析方法,对水泥基材料的表面与界面特性有了一定的研究,研究了其对混凝土的强度和耐久性的影响,分析出了材料表面与界面机理。关键词: 高性能混

2、凝土 表面效应 火山灰活性ABSTRACTSWith the continuous development of concrete materials, high performance have become the main trends of development of concrete materials. High performance concrete (HPC) as a new type of cement-based composite materials with high-performances, has been more and more widely used

3、 in engineering practice.This paper studied the surface and interface properties of Cement base materials through SEM, TEM, XPS, AES, SIMS modern analysis methods ,the influence on the strength and durability of concrete and analyzed the mechanism of the surface and interface properties in concrete.

4、KEYWORDS:High performance concrete (HPC) Surface effect Volcanic activity1 水泥基材料的发展现状及趋势1.1 发展现状随着建筑业、海洋业和交通业等的飞速发展,超高、超长、超强和在各种严酷条件下使用的建筑物的出现,对水泥与混凝土材料提出了更高的要求。高强度、长寿命、低环境负荷、功能化是当代水泥基材料发展的主要方向。传统混凝土在强度、抗压等方面的不足,引出了社会对先进水泥基材料的迫切需求。先进水泥基材料就是应用复合材料新理论(如: 有机-无机多相互穿网络结构模型、界面增强机理、延迟膨胀理论等),构建一个汽、液、固多相共存,有

5、机和无机复合的复杂系统,让产品具有更好的性质。先进水泥基材料把传统的水泥与混凝土材料推向高新技术领域,研究和开发的部分成果已进入应用阶段,取得了巨大的经济、社会效益。1.1.1 混凝土性能裂化过程和寿命预测的研究水泥基材料的应用范围在不断扩大, 高温或局部高温时水泥基材料的性能与常温下有很大的不同, 但在此方面的研究很少, 中国建筑材料科学研究总院针对目前水泥基材料热变形性能研究方法不足, 结论不系统的现状, 首次系统研究了硬化水泥基材料高温热膨胀性能及其影响因素, 取得了很大的进展。1.1.2 大流动性混凝土的制备化学外加剂的出现开启了混凝土由干硬性向塑性再向流动性的发展之路。混凝土化学外加

6、剂已经成为配制优质混凝土必不可少的原材料, 它改善了新拌混凝土的工作性能和硬化混凝土的强度等性能。特别是合成减水剂技术不断发展, 由原来的萘系发展到新一代的聚羧酸系高性能减水剂, 减水率大幅度提高, 还具有良好的坍落度保持性能和一定的引气性, 满足了自流平混凝土的需要。在一些钢筋特别致密, 不便插捣的结构构件, 或者大面积的车间、厂房施工时, 自流平混凝土技术都是最好的选择。1.1.3 改善水泥基材料体积稳定性的研究进展高性能混凝土配制时通常都使用较高的胶凝材料总量, 并且掺加有大量磨细矿物掺合料, 这些措施引起了较大的混凝土自收缩, 混凝土的开裂趋势增加。近年来, 高性能混凝土研究的重点之一

7、就是早期收缩的机理、测量方法和设备、影响因素和改善措施等, 并取得了突出进展。大连理工大学和中国建筑材料科学研究总院共同完成的国家自然科学基金重点项目􀀂 混凝土结构裂缝的形成与发展机理及控制技术研究 是近年来针对混凝土早期收缩开裂问题开展系统研究的项目之一, 该项目从材料和结构两个不同角度深入研究了影响混凝土早期收缩开裂的因素。研究工作有重要的学术意义和普遍的工程应用价值。1.1.4 高延性水泥基复合材料的研究进展复合化是水泥基复合材料高性能化的主要途径, 纤维增强是核心。高的纤维掺量并辅以特殊的制备工艺,如渍浆纤维混凝土( SIFCON, S lurry In filtra

8、ted F iberConcrete) ,使其抗压、抗拉、抗弯、抗剪与抗冲击强度及韧性等性能大幅度提高。同时,低掺量的短纤维按三维的方式乱向均匀分布于水泥基材料中使其综合性能优异,如:施工简便,减少塑性收缩开裂、延缓裂缝扩展,提高水泥基材料裂后的承载力和韧性等,所以,近些年得到了世界各国的广泛的重视。其中,高延性纤维增强水泥基复合材料( Engineered Cem en titious Compos ite,ECC)是近几年最为活跃的一种,2006年在􀀂Architectur􀀂alR ecords in the Con crete andM ason ry

9、 Category 被评为面向建筑师、设计师和管理者五个最有新意和发展潜力的建筑产品之一。1.2 发展趋势1.2.1 超复合化混凝土是以水泥石为基相、骨料作为分散相的分散复合结构,以其抗压强度高、耐火性好、使用灵活、施工方便等优点一直沿用至今。然而水泥的矿物组成从根本上决定了其低韧性和低抗拉强度的弱点。只有从改变混凝土的组成入手才能解决混凝土高韧低脆的缺陷,其中包括微细观复合化和宏观复合化。1.2.2 高强、高性能化混凝土高强化的意义在于减轻建筑物的自重5,目前我国大中城市中,预拌混凝土工厂已经比较成熟的掌握了C50-C60混凝土配制与泵送技术,现正在逐步得以提高,而C50-C60混凝土在大面

10、积推广。在高强混凝土的研究中应致力于提高混凝土的延性、抗裂性与抗拉强度。高性能混凝土的实现途径在于完善其组成材料和工艺过程,在组成材料方面,通常使用高效减水剂和超细矿物掺合料(包括超细微粉、细磨矿渣和粉煤灰等),超细矿物细掺料,特别是纳米材料的加入能够明显改善水泥石的孔结构和密实程度,提高混凝土的耐久性;在配合比方面又用低水胶比,最大可能的消除因水分散失带来的不利影响;在制备工艺上采用完善的质量管理体系,消除在施工过程引起的缺陷。HPC不仅具有性能上的优势,而且在组成材料中大量利用工业废渣,显著减少水泥用量,因此从可持续发展的角度而言,高性能混凝土本身就是绿色混凝土。1.2.3 高功能、高智能

11、化到目前为止,所使用的混凝土绝大多数都是只有单一功能的,这使得混凝土在某些特殊位置的使用上受到了极大的限制。早在1994年日本东京工业大学的长泷重义教授就提出了“土木工程混凝土材料的高性能化、高功能化”。在国际上高性能混凝土(High Performance Concrete)不断发展的同时,高功能混凝土(High Function Concrete)已经崭露头角,并且展示出极大的生命力。与此同时,随着现代电子信息技术和材料科学的发展,混凝土的智能化也成为混凝土发展的努力方向。智能混凝土是在混凝土原有组分的基础上复合智能型组分,使混凝土具有自感知和记忆、自适应、自修复的特性的多功能材料。它在对

12、重大土木基础设施的应变的实量监测、损伤的无损评估、及时修复以及减轻台风、地震的冲击等诸多方面有很大的潜力,对确保建筑物的安全和长期的耐久性都极具重要性。因此混凝土的功能单一问题必须在不断的实践中得到解决。诚然,人类文明还将对混凝土不断提出新的功能要求,这些均需我们去发现、去研究、去完成。只有使混凝土不断具有新的复合功能,才能跟上人类文明发展的步伐,才能永葆青春。混凝土功能、智能一体化的进程必须加速。2 水泥基材料常用的界表面测试方法2.1 SEM表征2.1.1 概述扫描电子显微镜的制造是依据电子与物质的相互作用。当一束高能的人射电子轰击物质表面时,被激发的区域将产生二次电子、俄歇电子、特征x射

13、线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。同时,也可产生电子-空穴对、晶格振动 (声子)、电子振荡 (等离子体)。原则上讲,利用电子和物质的相互作用,可以获取被测样品本身的各种物理、化学性质的信息,如形貌、组成、晶体结构、电子结构和内部电场或磁场等等。扫描电子显微镜正是根据上述不同信息产生的机理,采用不同的信息检测器,使选择检测得以实现。如对二次电子、背散射电子的采集,可得到有关物质微观形貌的信息;对X射线的采集,可得到物质化学成分的信息。正因如此,根据不同需求,可制造出功能配置不同的扫描电子显微镜。2.1.2 基本原理扫描电子显微镜的制造是依据电子与

14、物质的相互作用。当一束高能的人射电子轰击物质表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。同时,也可产生电子-空穴对、晶格振动 (声子)、电子振荡 (等离子体)。原则上讲,利用电子和物质的相互作用,可以获取被测样品本身的各种物理、化学性质的信息,如形貌、组成、晶体结构、电子结构和内部电场或磁场等等。扫描电子显微镜正是根据上述不同信息产生的机理,采用不同的信息检测器,使选择检测得以实现。如对二次电子、背散射电子的采集,可得到有关物质微观形貌的信息;对x射线的采集,可得到物质化学成分的信息。正因如此,根据不

15、同需求,可制造出功能配置不同的扫描电子显微镜。2.1.3 分析方法(1)显微结构的分析在陶瓷的制备过程中 ,原始材料及其制品的显微形貌、孔隙大小、晶界和团聚程度等将决定其最后的性能。扫描电子显微镜可以清楚地反映和记录这些微观特征 ,是观察分析样品微观结构方便、易行的有效方法 ,样品无需制备 ,只需直接放入样品室内即可放大观察;同时扫描电子显微镜可以实现试样从低倍到高倍的定位分析 ,在样品室中的试样不仅可以沿三维空间移动 ,还能够根据观察需要进行空间转动 ,以利于使用者对感兴趣的部位进行连续、系统的观察分析。扫描电子显微镜拍出的图像真实、清晰 ,并富有立体感 ,在新型陶瓷材料的三维显微组织形态的

16、观察研究方面获得了广泛地应用。(2)纳米尺寸的研究纳米材料是纳米科学技术最基本的组成部分 , 现在可以用物理、化学及生物学的方法制备出只有几个纳米的“颗粒 ” 。纳米材料的应用非常广泛,比如通常陶瓷材料具有高硬度、耐磨、抗腐蚀等优点, 纳米陶瓷在一定的程度上也可增加韧性、改善脆性等 , 新型陶瓷纳米材料如纳米称、纳米天平等亦是重要的应用领域。纳米材料的一切独特性主要源于它的纳米尺寸 ,因此必须首先确切地知道其尺寸 , 否则对纳米材料的研究及应用便失去了基础。(3)铁电畴的观测压电陶瓷由于具有较大的力电功能转换率及良好的性能可调控性等特点在多层陶瓷驱动器、微位移器、换能器以及机敏材料与器件等领域

17、获得了广泛的应用。随着现代技术的发展 ,铁电和压电陶瓷材料与器件正向小型化、集成化、多功能化、智能化、高性能和复合结构发展 ,并在新型陶瓷材料的开发和研究中发挥重要作用。2.2 TEM表征2.2.1 概述透射电子显微镜(Transmission electron microscope,缩写TEM),简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像。通常,透射电子显微镜的分辨率为0.10.2nm,放大倍数为几万百万倍,用于观察超微结构,即小于0.2微米、光学显微镜下无法

18、看清的结构,又称“亚显微结构”。2.2.2 基本原理吸收像:当电子射到质量、密度大的样品时,主要的成相作用是散射作用。样品上质量厚度大的地方对电子的散射角大,通过的电子较少,像的亮度较暗。早期的透射电子显微镜都是基于这种原理。 衍射像:电子束被样品衍射后,样品不同位置的衍射波振幅分布对应于样品中晶体各部分不同的衍射能力,当出现晶体缺陷时,缺陷部分的衍射能力与完整区域不同,从而使衍射钵的振幅分布不均匀,反映出晶体缺陷的分布。 相位像:当样品薄至100A以下时,电子可以穿过样品,波的振幅变化可以忽略,成像来自于相位的变化。2.3 XPS表征2.3.1 XPS概述X射线光电子能谱(XPS)也被称作化

19、学分析用电子能谱(ESCA)。该方法是在60年代有瑞典科学家K.Siegbahn教授发展起来的。由于光电子能谱的理论与技术的重大贡献,1981年K.Siegbahn获得了诺贝尔奖。30多年来,XPS无论是从理论还是实验技术上都已获得了长足的发展。XPS已从刚开始主要用来对化学元素的定性分析,业已发展为固体材料表面元素定性、半定量分析及元素化学价态分析的重要手段。目前该分析方法在日常表面分析工作中的份额已达到50%,是一种重要的表面分析工具。2.3.2基本原理XPS的原理较简单,就是一种光电离作用。当一束光子辐照到样品表面时,光子可以被样品中某一元素的原子轨道上的电子所吸收,使得该电子脱离原子核

20、的束缚,以一定的动能从原子内部发射出来,变成自由电子,二原子本身则变成一个激发态的离子。这种现象就叫做光电离作用。用X射线照射固体时,由于光电效应,原子的某一能级的电子被击出物体之外,称为光电子。由于只有表面的光电子才能从固体中逃逸出来,因而测得的的电子结合能必然反映了表面化学成分的情况。2.3.3仪器系统组成X射线光电子能谱仪主要是由超高真空系统、X射线激发源系统和能量分析系统、离子枪及计算机数据采集处理系统等组成。2.3.4 XPS的分析方法 (1)表面元素定性分析这是一种最常规的分析方法,一般利用XPS能谱仪的宽扫描程序。(2)表面元素的半定量分析首先应当明确的是,XPS并不是一种很好的

21、定量的分析方法。它给出的仅是一种半定量的结果,即相对含量而不是绝对含量。(3)表面元素的化学价态分析表面元素化学价态分析是XPS的最重要的一种分析功能,也是XPS图谱解析最难并比较容易发生错误的部分。(4)元素沿深度方向的分析常用的有Ar+剥离深度分析、变角XPS深度分析和Tougaard法。2.4 AES分析2.4.1 AES概述1925年Pierre Auger发现了俄歇电子,但由于信号很弱,直到1976年在采用了微分锁相技术以后,使俄歇电子能谱仪获得了很高信被比,才开始出现商业化的俄歇电子能谱仪,并发展成为一种研究固体表面成分的重要分析技术。1969年Palmberg等人引入了简筒能量分

22、析器,使得俄歇电子能谱的信被比得到了很大的改善。现在的俄歇电子能谱仪主要采用同轴电子枪的CMA能量分析器以及单独电子枪和半球型能量分析器。一般采用电子束作为激发源。随和微电子技术的发展,俄歇电子能谱仪已发展为具有很高微区分辨能力(6nm)的扫描俄歇电子探针(SAM)。2.4.2 俄歇电子的能谱原理当具有足够能力的粒子(光子、电子或离子)与一个原子碰撞时,原子内层轨道上的电子被激发出来后,在原子的内层轨道上产生一个空穴,形成了激发态正离子。这种激发态的正离子是不稳定的,必须通过退激发而回到稳定态。在此激发态离子的退激发过程中,外层轨道的电子可以向该空穴跃迁并释放出能量,而该释放出的能量又可以激发

23、同一轨道层或者更外层轨道的电子使之电离而逃离样品表面,这种射出的电子被称为俄歇电子。从上述工程可以看出,至少有两个能级和三个电子参与俄歇过程。俄歇电子是靶物质所特有的,与入射电子束的能量无关,同时俄歇电子只能从20埃以内的表层深度中逃离出来,对表面成分非常敏感,特用作表面化学成分分析。2.4.3 俄歇电子能谱分析方法(1)俄歇电子能谱的定性分析主要是利用俄歇电子的特征能量来确定固体表面的元素组成。(2)表面元素的半定量分析(3)表面元素的价态分析利用俄歇峰的化学位移、谱线变化、谱线宽度及特征强度变化等信息来确定元素的结合状态。(4)元素深度分布分析(5)微区分析(6)界面(晶界、相界)分析2.

24、5 SIMS分析2.5.1 SIMS概述1913年,J.J.Thomson建立了研究元素的同位素质谱仪。1931年,Woodock指导了第一个负离子谱,达到单位质量分辨率。1950年研制出了用于分析目的的次级离子质谱仪。次级离子质谱仪在分析这类材料的能力及其作显微分析时比电子探针方法具有更多的优点。半导体工业的兴起及其对深度和灵敏度显微镜分析的需求,确保了以显微探针和显微镜这两个方法为基础的高空间分辨率谱仪的迅速发展。或是出于痕量元素分析的高灵敏度的需求,或出于要作深度分析,所有这些方面的应用在作分析时都需要消耗材料,表面分析不是其目的。这个领域的质谱发展成为了所谓的动态次级离子质谱(DSIM

25、S)。目前发展的飞行时间质谱同四级质谱相比,在灵敏度、质谱分辨率和分析的质量范畴取得了几个数量级的提高,机油巨大的应用前景。2.5.2 SIMS的基本原理二次离子质谱使表征材料表面薄膜层化学成分的离子束分析技术。SIMS能够分析包括H在内的全部元素,能够给出同位素信息,分析化合物组成及分子结构,对很多成分具有ppm甚至ppb量级的高灵敏度,表面检测深度约几个原子;还可以进行微区成像分析和深度分析。工作原理是:载能离子通过聚焦,人射到处在高真空中待分析样品表面,由于一次离子撞击时将动量传递给了样品,引起表面的原子或分子以中性的和带电的两种状态发射出来,溅射的粒子中部分带电荷的就是二次离子。收集这

26、些二次离子并进行质量分析,即可得到二次离子质谱。2.5.3 SIMS分析方法(1)元素识别利用原子质量将大部分重要的元素识别出来。(2)定量分析利用质谱峰的相对强度来得到定量变化趋势。2.6 ISS分析2.6.1 概述离子散射谱仪(ISS)是以离子作为探测束,可以得到样品最表层的信息,因而具有很高的检测灵敏度。一般分为低能离子散射谱和高能粒子散射谱两种。离子束被固体表面散射后,散射离子的能量分布和角度分布。用于固体表面研究的离子散射谱用能量低于几千电子伏特的惰性气体离子射向表面,入射离子被表面原子的散射可近似用两个质点的弹性碰撞来处理。散射离子的能量分布和角度分布与表面原子的质量有确定的关系。

27、通过测量沿一定方向散射的离子的能量分布,可提供表面原子质量(即化学成分)和数目的信息。离子散射谱的信息只来自最表层,灵敏度极高,约108109原子/cm2。可以做到近于无破坏的表表面成分分析。2.6.2 基本原理利用低能惰性气体离子与靶表面原子进行弹性碰撞,根据弹性散射理论,散射离子的能量分布和角分布于表面原子的原子量有确定的关系。通过对散射离子分析可以得到表面单层元素组分及表面结构信息。2.6.3 分析方法靶表面最表层定性分析,检测灵敏度为10-3。3 水泥基材料颗粒作用机理3.1 作用机理在混凝土中掺加一定量的纳米颗粒或者纳米纤维,在一定程度上提高了混凝土的强度、韧性和耐久性能,除此之外还

28、可以使混凝土具有特殊功能,增加了混凝土应用范畴。3.1.1微集料填充效应作为纳米级别的微细颗粒,将其掺入到比它均要大几个数量级的胶凝颗粒之间,其小尺寸填充作用时很明显的,同以往所研制出的超高性能混凝土相比,一般最小的颗粒为硅灰粒子,硅灰粒子很好的填充于水泥粒子、粉煤灰粒子或其他粒子之间,胶凝体系间级配也较好,基体较密实,但此时再掺入比硅灰粒子更小级配的纳米粒子,硅灰粒子内部之间或与其它粒子之间的空隙被纳米粒子更进一步填充,胶凝体系间密实度得以更进一步提高,从而提高水泥石的力学性能。3.1.2火山灰效应在硅酸盐水泥硬化浆体中,氢氧化钙晶体是由硅酸二钙和硅酸三钙水化生成的,CH 的存在易使水泥硬化

29、浆体和骨料界面处厚度约为 20m 的范围内形成粗大的晶粒,并且 CH 具有一定的取向性,这会降低界面处的粘结强度,因此,减少甚至消除水泥硬化浆体中的氢氧化钙是十分必要的。 在 UHPC 中加入适当的纳米 SiO2粉体后,由于纳米粒子的高比表面积,表面原子配位的不足,导致大量的残键和不饱和键产生,使之处于较大的热力学不稳定状态,表面原子具有高的活性,很容易诱导 Ca2+、Si4+、Al3+、Fe3+等离子发生水化反应形成较多的水化物,这就是“纳米诱导水化效应”。这其中,纳米 SiO2的加入最重要的是不仅可以诱导 Ca2+的水化,还能与水化产物氢氧化钙发生二次反应,与硅灰相比纳米 SiO2可以更有

30、效的吸收水泥水化产生的氢氧化钙晶体,这两者与 CH 的反应能力有所差别,主要是因为两者在水泥浆体中的反应机理不同,纳米 SiO2在水泥浆体中的反应式为: SiO+HOHSiOH(快) (4.1) Si+HOHSiOH(快) (4.2) SiOH+Ca(OH)2C-S-H (4.3) 而硅灰在水泥浆体中的反应为: SiOSi+HOHSiOH(慢) (4.4) Si-OH+Ca(OH)2C-S-H (4.5) 在硅灰中 Si OSi的键键合牢固,较难断裂,所以硅灰与水的反应比纳米SiO2要慢很多,而纳米 SiO2表面大量的残键和不饱和键极易与 CH 晶体发生二次水化反应,早期生成絮状的 C-S-H

31、 凝胶,后期生成向外成辐射状的纤维 C-S-H,这种二次水化产物可填充不同粒径颗粒之间的孔隙,最终形成致密网络状的二级界面显微结构,有效地提高水泥浆体的性能。此外,纳米 SiO2除与氢氧化钙发生水化反应,还能有效地细化界面中所富集的 CH 晶粒,从而起到改善界面的积极作用。3.1.3晶核效应硅酸盐水泥熟料中最高可能含有 60%以上的 C3S 矿物,而硬化水泥浆体的性质在很大程度上取决于 C3S 的水化,即所生成的水化产物和形成的结构,可以说,C3S 对于水泥的水化起着决定性作用。当 C3S 开始水化时,会释放出 Ca2+,Ca2+具有比SO44+离子团高得多的迁移能力,在 UHPC 中掺入纳米

32、 CaCO3颗粒后,NC 颗粒虽然不直接参与水化发应,但由于其颗粒表面较高的活性,很容易吸附其它的原子,因此当 Ca2+扩散到 NC 颗粒表面时,会发生 NC 颗粒表面对 Ca2+的物理吸附作用,使得 NC 颗粒周围的 Ca(OH)2优先成核,导致了液相中 Ca2+离子浓度的降低,加速了 C3S 表面的离子向溶液中迁移,提高了 C3S 的水化速度,改善了界面中 Ca(OH)2的富集和定向排列性能,增加了水化产物 C-S-H 在界面中的含量,从而使得基体界面得到有效改善,提高了水泥石的强度与韧性。同时,由于 NC 颗粒的微集料作用,水泥石的密实度得到提高,水泥颗粒分布状态得到改善,分散了熟料颗粒,使熟料颗粒与水接触的面积更大,同样可以促进水泥水化,加速水泥水化反应进程。a) SEM照片中无裂痕 b)SEM照片中有裂痕图1 掺3%的NC混凝土SEM 照片3.1.4钉扎效应存在于水泥浆基体中的纳米颗粒还产生了“钉扎”效应。从图1 可以看出:水泥基体表面大量的粒径很小的一半露出断裂面、一半嵌固于水泥浆体中的颗粒状的 NC 还可以产生“钉扎”效应,水泥浆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论