![辽宁省大连市第十八高级中学2019年高一数学理月考试卷含解析_第1页](http://file3.renrendoc.com/fileroot_temp3/2021-12/3/b57e75c4-cf7b-4067-b7a6-6548d702db5c/b57e75c4-cf7b-4067-b7a6-6548d702db5c1.gif)
![辽宁省大连市第十八高级中学2019年高一数学理月考试卷含解析_第2页](http://file3.renrendoc.com/fileroot_temp3/2021-12/3/b57e75c4-cf7b-4067-b7a6-6548d702db5c/b57e75c4-cf7b-4067-b7a6-6548d702db5c2.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、辽宁省大连市第十八高级中学2019年高一数学理月考试卷含解析一、 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数f(x)=lnx的零点所在的大致区间是( )a(1,2)b(2,3)c(1,)d(e,+)参考答案:b【考点】二分法求方程的近似解 【专题】计算题;函数的性质及应用【分析】直接通过零点存在性定理,结合定义域选择适当的数据进行逐一验证,并逐步缩小从而获得最佳解答【解答】解:函数的定义域为:(0,+),有函数在定义域上是递增函数,所以函数只有唯一一个零点又f(2)ln210,f(
2、3)=ln30f(2)?f(3)0,函数f(x)=lnx的零点所在的大致区间是(2,3)故选:b【点评】本题考查的是零点存在的大致区间问题在解答的过程当中充分体现了定义域优先的原则、函数零点存在性定理的知识以及问题转化的思想值得同学们体会反思2. 函数的周期、振幅依次是 ( )a.、3 b.4、3 c.4、3 d.、3 参考答案:c略3. 一个三角形具有以下性质:(1)
3、三边组成一个等差数列;(2)最大角是最小角的2倍.则该三角形三边从小到大的比值为( )a4:5:6 b3:5:7 c. 4:6:8 d3:5:6参考答案:a4. 已知四个实数成等差数列,五个数成等比数列,则等于a. &
4、#160; b. c. d. 参考答案:b5. 函数log2(3x1)的值域为() a(0,) &
5、#160; b0,) c(1,) d1,)参考答案:a 6. 已知是第三象限角,且,则所在的象限是( )a第一象限 b第二象限 c第三象限 d第四象限参考答案:d是第三象限角,则,
6、.当时,有,所以位于第四象限. 7. 直线的斜率为( )a. b. c. d. 参考答案:a【分析】将直线的标准方程写为的形式,可得到斜率。【详解】由题得直线方程为,斜率,故选a。【点睛】本题考查直线的斜率,属于基础题。8. 如图,在下列四个正方体中,p,r,q,m,n,g,h为所在棱的中点,则在这四个正方体中,阴影平面与prq所在平面平行的是( )a. b. c. d. 参考答案:a【分析】根据线面平行判定定理以及作截面逐个分析判断选择.【详解】a中,因为,所以可得平面,又,可得平面,从而平面平面b中,作截面可得平面平面(h为c1d1中点),如图
7、:c中,作截面可得平面平面(h为c1d1中点),如图:d中,作截面可得为两相交直线,因此平面与平面不平行,如图:【点睛】本题考查线面平行判定定理以及截面,考查空间想象能力与基本判断论证能力,属中档题.9. 已知等比数列an的前n项和为sn,且sn为等差数列,则等比数列an的公比q( )a可以取无数个值 b只可以取两个值 c只可以取一个值 d不存在参考答案:c当时,数列为等差数列,即,上式成立,故符合题意当时,数列为等差数列,即,整理得,由于且,故上式不
8、成立综上可得只有当时,为等差数列故选c 10. 已知数列an,bn满足a1=1,且an,an+1是函数f(x)=x2bnx+2n的两个零点,则b10等于()a24b32c48d64参考答案:d【考点】数列与函数的综合;函数的零点【分析】由韦达定理,得出,所以,两式相除得=2,数列an中奇数项成等比数列,偶数项也成等比数列求出a10,a11后,先将即为b10【解答】解:由已知,所以,两式相除得=2所以a1,a3,a5,成等比数列,a2,a4,a6,成等比数列而a1=1,a2=2,所以a10=2×24=32a11=1×25=32,又an+an+1=bn,所以b10=a
9、10+a11=64故选d二、 填空题:本大题共7小题,每小题4分,共28分11. 若直线l的斜率为1,则直线l的倾斜角为参考答案:【考点】i2:直线的倾斜角【分析】设直线l的倾斜角为,)可得tan=1,解得【解答】解:设直线l的倾斜角为,)tan=1,解得=故答案为:12. 将函数的图象向左平移个单位长度,再向上平移1个单位长度,得到函数g(x)的图象,则函数g(x)具有性质_(填入所有正确结论的序号)最大值为,图象关于直线对称;图象关于y轴对称;最小正周期为;图象关于点对称参考答案:【分析】根据三角函数的图象变换,求得函数,再根据三角函数的图象与性质,逐项判定,即可求解,得到答案.【详解】由
10、题意,将函数的图象向左平移个单位长度,得到的图象,再向上平移1个单位长度,得到函数的图象对于函数,由于当时,不是最值,故的图象不关于直线对称,故错误;由于函数为偶函数,故它的图象关于y轴对称,故正确;函数的最小正周期为,故正确;当时,故函数的图象关于点对称,故正确;故答案为:13. 数列的通项公式为,已知前项和,则 参考答案:3514. 已知则 参考答案:-2略15. 已知点a(2,4),b(6,
11、60; 2),则的坐标为 参考答案:(-8,2)16. _。参考答案:略17. 如图,直三棱柱abc-a1b1c1中,f为线段aa1上的一动点,则当最小时,的面积为 . 参考答案:将直三棱柱abca1b1c1沿棱aa1展开成平面连接bc1,与aa1的交点即为满足最小时的点f,由于,再结合棱柱的性质,可得af=2,由图形及棱柱的性质,可得bf=2,fc1=,bc1=2 ,cos=sin=的面积为 ××2
12、215;=,故答案为: 三、 解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18. 设函数(且)是定义域为r的奇函数.(1)求k的值;(2)若,不等式对恒成立,求实数t的最小值.参考答案:解:(1)是定义在上的奇函数,对于任意的实数恒成立,即对于任意的实数恒成立,.(2)由(1)知,因为,所以,解得或(舍去),故任取且,则由指数函数的单调性知,故函数是上的减函数,由函数为奇函数且单调递减,知,即在上恒成立则,即实数的最小值是2.19. (本小题满分12分)已知abc的面积为,且.(1)求;(2)若点d为ab边上一点,且acd与abc的面积之比为1
13、:3.证明:abcd;求acd内切圆的半径r. 参考答案:解:(1)的面积为,3分由余弦定理得,5分由余弦定理得6分(2)与的面积之比为,8分由余弦定理得,9分,即10分(法一)在中,12分(法二)设的周长为,由得12分 20. 设为第二象限角,若求()tan的值;()的值参考答案:【考点】三角函数的化简求值【专题】计算题;转化思想;分析法;三角函数的求值【分析】()由已知利用特殊角的三角函数值及两角和的正切函数公式即可计算求值()由已知利用同角三角函数关系式可求cos,sin的值,利用诱导公式,二倍角公式化简所求后即可计算求值【解答】(本题满分9分)解:(),解得()为第
14、二象限角,cos=,sin=,【点评】本题主要考查了特殊角的三角函数值及两角和的正切函数公式,同角三角函数关系式,诱导公式,二倍角公式在三角函数求值中的应用,考查了计算能力和转化思想,属于基础题21. 已知函数,(1)若,试判断并证明函数的单调性;ww(2)当时,求函数的最大值的表达式参考答案:(1)判断:若,函数在上是增函数. 1分证明:当时,在区间上任意,设, 所以,即在上是增函数. 5分(注:用导数法证明或其它方法说明也同样给5分) www.zxs(2)因为,所以
15、60; 7分当时,在上是增函数,在上也是增函数,所以当时,取得最大值为; 9分当时,在上是增函数,在上是减函数,在上是增函数, 11分 而,当时,当时,函数取最大值为;当时,当时,函数取最大值为;13分综上得, 15分22. (15分)(1)设函数f(x)=,求ff(1);f(x)=3求x;(2)若f(x+)=x2+求f(x)参考答案:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 区域性总工会集体合同示范文本
- 劳务派遣单位劳动合同安全保密补充
- 夫妻共有房产分割合同
- 二零二五年度漫画主题咖啡厅经营管理合同
- 植物新品种权转让合同
- 链家房地产交易合同定金条款
- 房屋租赁保险合同样本
- 《智慧公园项目》课件
- 自然人借款合同
- 标准版离婚合同模板范文
- 松材线虫调查培训
- 方志敏《可爱的中国》全文阅读
- 2024年广西区公务员录用考试《行测》真题及答案解析
- 框架借款协议书(2篇)
- DB12-T 3034-2023 建筑消防设施检测服务规范
- 销售人员岗位职责培训
- 助理医师医院协议书(2篇)
- 短暂性脑缺血发作
- 父亲归来那一天(2022年四川广元中考语文试卷记叙文阅读题及答案)
- 小学数学五年级上册奥数应用题100道(含答案)
- 工业机器人编程语言:Epson RC+ 基本指令集教程
评论
0/150
提交评论