版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、实用的数学教学计划三篇 时间的脚步是无声的,它在不经意间流逝,又迎来了一个全新的起点,做好教学计划,让自己成为更有竞争力的人吧。想必许多人都在为如何写好教学计划而烦恼吧,以下是收集整理的数学教学计划3篇,欢迎阅读,希望大家能够喜欢。 多阅读和积累,可以使学生增长知识,使学生在学习中做到举一反三。在此为您提供八年级上册数学勾股定理教学计划,希望给您学习带来帮助,使您学习更上一层楼!一、内容和内容解析本节课为人教版八年级数学下册第十八章第一节,教材64页至66页(不含探究1)的内容。其内容包括章前对勾股定理整章的引入:20xx年北京召开的国际数学家大会的会徽及“赵爽弦图”的简介,反映了我国古代对勾
2、股定理的研究成果,是对学生进行爱国主义教育的良好素材。教材正文中从毕达哥拉斯发现等腰直角三角形的边之间的数量关系这一事实引入对勾股定理的探究,用面积法得到勾股定理的结论,而后教材又重点从“赵爽弦图”的方法对勾股定理进行了详细的论证;课后习题18.1的第1、2、7、11、12等题目针对勾股定理的内容适当的加以巩固,特别是第11、12题侧重对面积法运用的巩固。勾股定理是几何中几个重要定理之一,揭示了直角三角形三边之间的数量关系,是对直角三角形性质的进一步学习和深入,它可以解决许多直角三角形中的计算问题,在实际生活中用途很大。它不仅在数学领域而且在其他自然科学领域中也被广泛地应用,而说明数学是一门基
3、础学科,是人们生活的基本工具。学生接受勾股定理的内容“在直角三角形中两直角边的平方和等于斜边的平方”这一事实从学习的角度不难,包括对它的应用也不成问题。但对勾股定理的论证,教材中介绍的面积证法即:依据图形经过割补拼接后,只要没有重叠,没有空隙,面积就不会改变。学生接受起来有障碍(是第一次接触面积法),因此从面积的“分割”“补全”两种方法进行演示同时学生动手亲自拼接图形构成“赵爽弦图”并亲自验证三个正方形之间的面积关系得到勾股定理的证明。有利的让学生经历了“感知、猜想、验证、概括、证明”的认知过程,感触知识的产生、发展、形成以提高学生学习习惯和能力。本节的后续学习中,对勾股定理运用的探究和勾股定
4、理逆命题的论证和应用,都是将图形与数量紧密的结合,将有利的培养学生数形结合的意识以提高学生分析问题、解决问题的能力。同时也为后期学习四边形、圆中的有关计算及计算物体面积奠定基础,因此本节课无论从知识的角度还是从数学技能、数学思想方法及数学活动经验等层面都起着举足轻重的作用。为此,教学重点:勾股定理的内容 教学难点:勾股定理的论证二、教学目标及目标解析1、教学目标、了解勾股定理的文化背景,体验勾股定理的探索过程,掌握勾股定理的内容。、在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想。通过观察课件探究拼图等活动,体验数学思维的严谨性,发展形象思维,体验解决问题方法的多样性,并学会与人合
5、作、与人交流,培养学生的合作交流意识和探索精神。、在对勾股定理历史的了解过程中,感受数学文化,增强爱国情操,激发学习热情,养成关爱生活、观察生活、思考生活的习惯。2、目标解析、通过学生了解“赵爽弦图”、了解“毕达哥拉斯”探究勾股定理的过程而猜想、验证勾股定理,自愿接受这一理论事实并能简单运用。、通过面积法探究勾股定理,让学生感触到直角三角形这一图形与a2+b2=c2 数量关系建立对应关系,同时不同图形从面积角度的论证得到面积的割补是形的变化而面积这一数量不变。更深层次的建立数形结合的方法。、通过观察、探究的活动让学生感触知识的产生过程,学生从中学会合作交流,协作探究、归纳总结的学习方法,提高学
6、生的探索能力。、勾股定理知识是我国数学领域的璀璨明珠,代表着历代人民智慧和探索精神的结晶。通过学生亲身再次重温它的得来的过程从中感触我国数学知识源远流长和数学价值的伟大从中得到良好的思想的熏陶。三、教学问题诊断分析学生对勾股定理的形式容易接受甚至利用结论进行有关的计算难度也不大,但究其缘由有难度,这正是数学学习活动中学生要具备的基本的学习品质和学习技能。所以,在学习勾股定理由来的教学时,应有针对性地设计图形形式的多样呈现,让学生亲自动手拼接图形来揭示概念的由来及正确性。对于图形面积的计算学生有基本的技能,但如何最合理的进行分割或补全一时是不易理解,这属于思想方法层面的问题,学生往往只停留在能听
7、懂,但不能内化的层面,需要我进行精心的设计,充分展示“分割、补全、拼凑”以发挥教师的引导作用,为学生探究一般的直角三角形的三边关系做好铺垫,为数学多渠道多方法的探究证明做好引导。四、教学支持条件分析根据本节课的教材内容特点,为了更直观、形象地突出重点,突破难点,提高课堂效率,采用以观察发现、动手操练、演算探究为主,多媒体演示为辅的教学组织方式.在教学过程中,给学生提供充足的活动时间和空间,以我设计探究实验和带有启发性及思考性的问题串,创设问题情景,启发学生思维,学生亲自动手操作、测量、演算,让学生亲身体验知识的产生、发展和形成的过程.五、教学过程设计(一)创设情境,导入新课。问题1:请同学们欣
8、赏20xx年国际数学家大会会场情景的的图片,重点抽取会徽图案,你能发现它是有什么图形构成的?(材料附后)教师展示ppt课件,介绍数学家大会及会徽“赵爽弦图”,学生观察、发表意见、聆听介绍。【设计意图】以国际数学家大会-“赵爽弦图”为背景导入新课,提出问题,首先可以激发学生强烈的好奇心和求知欲,感受我国古代数学知识的伟大,进行爱国教育,增强学好数学的信心;其次让学生在观察、思考、交流的过程中,对勾股定理先有初步的感性认识.方案1:如果学生能够说出勾股定理的相关知识,则直接进入下一环节的学习。方案2:如果学生有困难,则安排学生自学教材,再发表意见。学生发言,教师倾听。视学生回答的重点 板书 :勾三
9、股四弦五 等【设计意图】教师获得学生的知识储备以便以后的教学定位。再次让学生感触勾股定理的存在、作用即勾股定理是研究直角三角形边之间的关系的定理,明确学习目标。(二)观察演算,合作探究,初具概念问题3:介绍毕达哥拉斯发现勾股定理的故事。利用ppt课件展示毕达哥拉斯的发现和他的探究的过程。提问:这三个正方形之间的面积有什么关系?从中可以转化得到等腰直角三角形三边在数量上有什么关系? (故事附后)教师口述故事,ppt课件同步演示;学生借助直观的课件,学生个体或学生间观察交流探究得到结论。【设计意图】首先,故事中代出问题既激发学生的兴趣又降低了学生探究的难度,让每个学生都可做,可得;其次得到三个正方
10、形面积间的关系而得到等腰直角三角形三边之间的关系,由特殊的图形为研究定理的一般性做好铺垫;再者学生初步具有了勾股定理的雏形,即在等腰直角三角形中两直角边的平方和等于斜边的平方。问题4:毕达哥拉斯想到:这一结论是不是所有的直角三角形都具备呢?于是展开了进一步的探索。教师利用ppt课件展示,提出问题;学生利用学习案中第1题自己进一步探究,交流;猜测验证。(学习案附后)【设计意图】问题更深一层次,调动学生高涨的探究热情,同时有效的渗透了由特殊到一般的数学思想。问题5:你是怎样演算的?教师关注学生之间的交流,关注学生借助面积法探究问题的不同解法,选取代表性的方法演示。学生个体或小组探究、交流。视学生的
11、学习情况确定下步的教学:方案1:学生能够用面积分割法如图一或用面积补全法如图二的方法验证了结论,则直接进行下一步的教学。方案2:学生不能够得到,探究学习有困难,则教师借助ppt课件演示,精讲点拨面积的割补法,对命题进行验证。【设计意图】教无定法,视学定教;学生是学习的主人,教师是学生学习的合作者。学生亲自画图,演算,利于对结论的理解。亲身感受知识的产生、形成,初步体会面积法;再次了解勾股定理。问题6:通过我们大家一起的实验,你得到任意直角三角形的三边之间有什么关系吗?试用语言描述。学生描述,教师板书。【设计意图】加深对勾股定理内容的叙述、理解,达成目标。体会数学观察-探究-整理-归纳的数学方法
12、,体验学习的成功。(三)引导实验,探究论证,形成体系。问题7:我们已经对直角三角形三边之间关系有了充分的认识。但它的正确性需要数学理论做基础,我国古代数学家赵爽就对该命题进行了严谨的论证。我们刚才欣赏的会徽就是他的论证方法。下面我们一起进行论证。教师用ppt课件演示拼凑过程,精讲强调面积的无缝、不重叠拼接得到面积相等。【设计意图】上一环节是从数字上的验证,本环节上升到理论层面,以加强数学学习的严谨性。让学生学懂面积法,再次加深对勾股定理的理解。感受我国数学知识的悠久历史,唤起爱国精神,启发学习数学的兴趣。问题8:学生用4个全等的直角三角形重新拼凑图形并根据排放 画出图形并用面积法进行论证。学生
13、或小组间进行合作实验,共同协作探究;教师巡视指导。【设计意图】学生自主探究,再次理解勾股定理,学会面积法论证勾股定理。培养学生的动手探究能力,养成严谨的学习习惯;学会交流,达到知识、方法共享,体验合作的乐趣、合作的成功。问题9:教师选取代表性的拼接方法,全班展示。【设计意图】共享知识,拓展思路,体会一题多解,更深层次的了解掌握勾股定理。(四)归纳提高,巩固运用,形成能力。问题10:我们这节课研究的勾股定理是对什么的研究?它侧重是研究直角三角形的什么关系?以前学习直角三角形的哪些知识?学生回忆,发言。教师强调:勾股定理的前提条件是直角三角形,也就是说其他的三角形是不具备的,但要解决其他三角形的计
14、算问题,我们要借助辅助线(特别是高线)把它转化为直角三角形。教师板书。【设计意图】更新知识系统,逐渐完善知识脉络,提高分析问题解决问题的能力。问题11:完成以下练习题教材69页第1题、学生独立完成;教师巡视指导,板书得数,介绍勾股数。【设计意图】第1题针对勾股定理的直接运用。提高学生对新知识的理解、运用。巩固目标。(五)归纳小结,反思提高问题12:通过本节课的学习,你有哪些收获?学生谈本节课的学习感受,教师梳理、概括本节课主要的学习内容,并揭示蕴涵的数学思想方法及评价学生在课堂上的表现对学生进行思想教育。【设计意图】教师引导学生归纳本节课的知识要点和思想方法,使学生对直角三角形有一个整体全面认
15、识,同时感受数形结合的数学思想。为大家提供的八年级上册数学勾股定理教学计划大家仔细阅读了吗?最后祝同学们学习进步。 数学教学计划 篇2 一、内容和内容解析(一)内容概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.(二)内容解析现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式
16、几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.二、目标和目标解析(一)教学目标1.理解不等式的概念2.理解不等式的解与解集的意义,理解它们的区别与联系3.了解解不等式的概念4.用数轴来表示简单不等式的解集(二)目标解析1.达成目标1的标志是:能正确区别不等式、等式以及代数式.2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集
17、是所有解组成的一个集合.3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.三、教学问题诊断分析本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集.四、教学
18、支持条件分析利用多媒体直观演示课前引入问题,激发学生的学习兴趣.五、教学过程设计(一)动画演示情景激趣多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.(二)立足实际引出新知问题一辆匀速行驶的汽车在1120距离a地50km,要在1200之前驶过a地,车速应满足什么条件?小组讨论,合作交流,然后小组反馈交流结果.最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充).从速度方面考虑:x>50
19、247;设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解.老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力.(三)紧扣问题概念辨析3.不等式的解集设问1:什么是不等式的解集?设问2:不等式的解集与不等式的解有什么区别与联系?由学生自学后再小组合作交流.老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合.4.解不等式设问1:什么是解不等式?由学生回答.老师强调:解不等式是一个过程.设计意图:培养学生的自学能力,进一步培养学生合作交流的意识.遵循学生的认知规律,有意识、有计划、有条理地设计一些
20、问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识.老师再适当点拨,加深理解.(四)数形结合,深化认识问题1:由上可知,x>75既是不等式的解集,也是不等式>50的解集.那么在数轴上如何表示x>75呢?问题2:如果在数轴上表示 x 75,又如何表示呢?由老师讲解,注意规范性,准确性.老师适当补充:“” 与“”的意义,并强调用“”或“”连接的式子也是不等式.比如x 75 就是不等式.设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想.(五)归纳小结,反思提高教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题1、什么是不等式?2、什么
21、是不等式的解?3、什么是不等式的解集,它与不等式的解有什么区别与联系?4、用数轴表示不等式的解集要注意哪些方面?设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验.(六)布置作业,课外反馈教科书第119页第1题,第120页第2,3题.设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整. 数学教学计划 篇3 一、学情分析:我现任六年级5班的数学教育教学工作。学生整体学习习惯比较好,多数同学能够完成自己的学习任务,并且效果较好。新的学期里,我将根据学生的学习情况,采取不同的学习方法,使学生在教师的引导下能喜欢数学,我还要加强培养他们的各种学习
22、数学的能力,利用小组讨论的学习方式,使学生在讨论中人人参与,各抒己见,互相启发, 自己找出解决问题的方法,体验学习数学的快乐。二、教材分析:这一册教材包括下面一些内容:负数、百分数(二)、圆柱与圆锥、比例、数学广角、整理和复习等。在数与代数方面,安排了负数和比例两个单元。结合生活实例使学生初步认识负数,了解负数在实际生活中的应用。比例的教学,使学生理解比例、正比例和反比例的概念,会解比例和用比例知识解决问题。在空间与图形方面,这一册教材安排了圆柱与圆锥的教学,在已有知识和经验的基础上,使学生通过对圆柱、圆锥特征和有关知识的探索与学习,掌握有关圆柱表面积,圆柱、圆锥体积计算的基本方法,促进空间观
23、念的进一步发展。在用数学解决问题方面,教材一方面结合圆柱与圆锥、比例、等知识的学习,教学用所学的知识解决生活中的简单问题;另一方面安排了“数学广角”的教学内容,引导学生通过观察、猜测、实验、推理等活动,经历探究“歌巢问题”的过程,体会如何对一些简单的实际问题“模型化”,从而学习用“歌巢问题”加以解决,感受数学的魅力,发展学生解决问题的能力。三、教学目标:1、了解负数的意义,会用负数表示一些日常生活中的问题。2、理解比例的意义和基本性质,会解比例,理解正比例和反比例的意义,能判断两种量是否成正比例或反比例,会用比例知识解决比较简单的实际问题;能够根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并能根据其中一个量的值估计另一个量的值。3、会看比例尺,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 45065-2024皮革和毛皮化学试验挥发性甲基环硅氧烷残留量的测定
- 二零二五年度房地产投资居间服务尽职调查合同3篇
- 二零二五年度二手车过户业务资金监管及担保服务合同
- 二零二五年度出租车车辆租赁与乘客服务满意度调查合同3篇
- 二零二五年度SEO关键词研究及分析服务合同2篇
- 二零二五年度海上货物共同海损处理合同3篇
- 二零二五年度新媒体短视频节目制作服务协议2篇
- 豌豆的种植课程设计
- 2025年度数据中心冷却系统安装工程合同9篇
- 二零二五年度房屋买卖合同范本:维修基金结算3篇
- 七年级生物上册期末测试卷(各版本)
- 07FD02防空地下室电气设备安装图集
- 基础会计(第7版)ppt课件完整版
- Q∕SY 1206.1-2009 油气管道通信系统通用技术规范 第1部分:光传输系统
- 汽车4S店八大运营业绩指标管控培训_89页
- 设备安装、调试及验收质量保证措施
- 火力发电厂生产技术管理导则
- 汽轮机叶片振动与分析
- 地质工作个人述职报告三篇
- 产品可追溯流程图圖
- 形意拳九歌八法释意
评论
0/150
提交评论