《遥感技术》实验报告_第1页
《遥感技术》实验报告_第2页
《遥感技术》实验报告_第3页
《遥感技术》实验报告_第4页
《遥感技术》实验报告_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、郑州大学水利与环境学院遥感技术实验报告(适用于地理信息系统专业)实验一、erdas视窗的基本操作一、实验目的初步了解目前主流的遥感图象处理软件erdas的主要功能模块,在此基础上,掌握视窗操作模 块的功能和操作技能,为遥感图像的儿何校正等后续实习奠定基础。二、实验步骤1. 图像显示操作视窗菜单条:file-open- raster layer-*select layer to add 对话框2. 实用菜单操作光标查询功能:utilityinquire cursor量测功能:utility一measure数据叠加功能混合显示工具utility一blendfile utility view aol

2、 raster help卷帘显示工具utility一swipe(viewer ssvipeswpe posikyndirection:a vwlical horizontal100aiiomafc swipe厂 auo mode speed | 血 日muhlayer mode: (ljocked (ijnvisibte |w|orkjng (sjxic|l|l|w|simwename闪烁显示匚具utility一flickero232573.03, 3805626.16 (utm / clarke 1866)automate fickw:automate fickw:auto mode spe

3、ed: 1300 斗厂 auto modespeed:manual flicker厂 mduayci mode. (lfccked(v/)0!kjng (sjtabconcelhelp厂 mduayci mode. (lfccked(v/)0!kjng (sjtabc文件信息操作:uti 1 ity一layer info三维图像操作:utility一image drapefile utility view position raster help诊嗨圖色嘗0團禹嘗i3. 显示菜单操作文件显示顺序:view一arronge layers显示比例:viewscale显示变换操作:view- rot

4、ate/fl ip/stretch4. 矢量菜单操作打开图像文件:fileopen一vector layerselect layer to add创建图形文件:filenew一vector layer一creat a new vector layer 对话框绘制图形要素视窗菜单条:vectorenab 1 e editingvector工具面板-点击place point图标,在视窗中依据栅格图像绘制点。点击draw line图标 ,在视窗中依据栅格图像绘制线。-点击creat polygon图标,在视窗屮依据图像绘制面。保存矢量文件:filesave top layer三、实验结果及分析:简

5、述矢最功能在erdasq的意义。矢量功能可以使研究区域的数据库更加完整化,从而支持感兴趣区域的选取以及在儿个校正中 也起到突出作用。在此基础上可以将矢量图层叠加到髙粹度的最新遥感图像上以对矢量数据进行儿 何形状和属性的更新,也可以用矢量图层在栅格图像上确定一个感兴趣的区域,以对该区域进行分 类、增强等操作四、实验结果及分析:简述不同传感器的卫星影像的特点和冃视效果。tm影像是指美国陆地卫星45号专题制图仪(thematic mapper)所获取的多波 段扫描影像。有7个波段,其波谱范围:tm-1为0.450.52微米,tm 2为0. 520. 60微 米,tm-3为0. 630.69微米,以上

6、为可见光波段;tm-4为0. 76090微米,为近红外波 段;tm-5为1. 551. 75微米,tm-7为2. 082. 35微米,为中红外波段:tm-6为10. 4012. 50 微米,为热红外波段。影像空间分辨率除热红外波段为120米外,其余均为30米。tm影像 具较高空间分辨率、波谱分辨率、极为丰富的信息量和较高定位精度,能满足冇关农、林、 水、土、地质、地理、测绘、区域规划、环境监测等专题分析和编制1 : 10万或更大比例尺 专题图,修测中小比例尺地图的要求。spot影像光谱响应范围,全色波段为0.510.73微米;多波段分别为0.500.59微米 (绿)、0.610.68微米(红)

7、和0.790.89微米(近红外)。空间分辨率方而,全色波 段为10米,多波段为20米。实验二波段组合与遥感数字图像的裁剪一、实验目的了解如何将单波段黑白影像合成为彩色影像,在此:基础上,裁明感兴趣区域,为遥感图像的儿 何校正等后续实习奠定基础。二、实验原理在实际工作中,对遥感图像的处理和分析都是针对多波段图像中的感兴趣区域进行的,所以, 我们需要将原始的单波段数据进行组合,并在多波段图像上进行感兴趣区域的裁剪。三、实验结果及分析:附裁剪前后对比图,分析裁剪各种方式的不同作用。裁剪前裁剪后aoi裁剪处标裁剪a0i裁剪是不规则分幅裁剪,所裁剪图像的边界范1节1是任意多边形,无法通过左上角和右下角

8、两点的坐标确定裁剪位置,而必须事先生成一个完整的封闭多边形;坐标裁剪是规则分幅裁剪,所 裁剪图像的边界范围是一个矩形,通过左上角和右下角两点的坐标就可以确定图像的裁的位置,整 个裁剪过程比较简单 四、试验思考:多波段合成的效果比较。列出你采取了哪些组合,效呆差开如何?波段1为蓝波段,波段2为绿波段,波段3为红波段段,波段4为近红外波段,波段5为屮红 外波段。3 2 1波段组合为真彩色合成,即3、2、1波段分别赋了红、绿、蓝色,则获得自然彩色合成 图像,图像的色彩与原地区或景物的实际色彩一致,适合于非遥感应用专业人员使用。43 2波段组合为标准假彩色合成,即4、3、2波段分别赋了红、绿、蓝色,获

9、得图像植被成红 色,由于突出表现了植被的特征,应用十分的广泛,而被称为标准假彩色。4、5、3波段分别赋红、绿、蓝色合成的图像,色彩反差明显,层次丰富,而且各类地物的色 彩显示规律与常规合成片相似,符合过去常规片的目视判读习惯。5、4、3波段分别赋予红、绿、蓝色,则获得近似自然彩色合成图像,适合于非遥感应用专业 人员使用。321波段组合图4 32波段组合图45 3波段组合图像543波段组介图像实验三 遥感图像的几何校正一、实验目的通过操作,学握遥感图像儿何校正的基本方法和步骤,深刻理解遥感图像儿何校止的意义。二、实验原理儿何校止就是将图像数据投影到平面上,使其符介地图投影系统的过程。而将地图投影

10、系统赋 予图像数据的过程,称为地理参考。三、实验结呆及分析:(附儿何校正比较图,并以定性语言说明儿何校正后影像的变化及产生变化的原因)zhzh2005cbers 参考图像2004spot儿何校正前图像2004spot儿何校正后图像校正后的图像相对于校正而的图像发牛了倾斜,河流及道路走势等图像信息发生了变化,像元 的处标也发牛了变化,而11变化后的地物特征更加接近参考图像的地物特征。山于遥感平台位置和 运动状态的变化、地形的起伏、人气的折射以及地球表而曲率的影响导致遥感影像在几何位置上发 生变化,而儿何校正减小了这些因素的影响,因此校正后影像相对于校正前发生了变化。四、实验思考儿何校正吋如何进行

11、控制点的选择?如何减少误差?儿何校正吋应根据多项式的阶数,选取足够数量的控制点,各阶多项式所需控制点的数量, 除满足最少要求的控制点外,一般还要额外选取一定数量的控制点,以使用最小二乘平差求出的较 为合理的多项式系数。最少控制点数计算公式为(t+1) (t+2)/2,其屮t为次方数。地血控制点一般 选样在校正图像和标准图像都比较容易识别的同名地物点,如道路交叉点,路标等,切地面控制点 选择尽力要覆盖地图的整个区域,分布均匀,而不能够成线性。选取的方法为1固定的地形交叉点。 2对介线选取一棋盘方式加密一蛇形加密。实验四遥感图像的增强处理u!一、实验目的通过操作,了解空i'可增强、辐射增强

12、儿种遥感图象增强处理的过程和方法,加深对图象增强处 理的理解。二、实验原理erdas image图像解译模块主要包括了图像的空间增强、辐射增强、光谱增强、高光谱工具、 傅立叶变换、地形分析以及其他实用功能。主要包括卷积增强处理;锐化增强处理;滤波分析、总 方图处理;主成分分析、色彩变换等。三、实验结果与分析:认真对比各图像增强处理方法处理前后的图像差別,以及各种方法z间的原 理和效果差异。(附增强前后对比图,可用黑白图)卷积增强询图像卷积增强后图像口适应滤波处理询图像口适应滤波处理后图像¥-高分辨率图像多光谱图像分辨率融合后图像锐化增强处理前图像锐化增强处理后图像直方图均衡化前图像直

13、方图均衡化后图像直方图匹配前图像直方图匹配后图像主成分变换両图像主成分变换后图像缨帽变换前图像缨帽变换后图像色彩变换前图像色彩变换后图像指数计算询图像指数计算后图像卷积增强是将整个图像按照象元分块进行平均处理,用于改变图像的空间频率特征。卷积增强 处理后各种地物的空间频率显著增强,可用于某些地物的捉取。自适应滤波是应用wallis adapter filter方法对图像的感兴趣区域(aoi)进行对比度拉仲处 理,从而达到图像增强的冃的。自适应滤波处理后地物的细节更加突出,某些空间纹理特征的信息 得到增强,而另一些则得到抑制。分辨率融合是对不同空间分辨率遥感图像的融合处理,使处理后的遥感图像既具

14、有较好的空间 分辨率,乂具有多光谱特征,从而达到图像增强的目的。锐化增强处理实质上是通过对图像进行卷积滤波处理,使整景图像的亮度得到增强而不使其专 题内容发生变化,从而达到图像增强的h的。锐化增强处理后图像的亮度冇所提高,相邻像元z间 的灰度值z差增人,突出了图像边缘、线状冃标以及某些亮度变化大的部分。直方图均衡化实质上是对图像进行非线性拉伸,重新分配图像象元值,使一定灰度范围内象元 的数量大致相等,这样,原來总方图中间的峰顶部分对比度得到增强,而两侧的谷底部分对比度降 低,输出图像的肯方图是一个较平的分段肓方图。肓方图均衡化也有一些缺点,如变换示图像的灰 度级减少,某些细节消失,处理示对比度

15、不自然的过分增强。直方图匹配是对图像查找表进行数学变换,使一幅图像某个波段的直方图与另一幅图像对应波 段类似,或使一幅图像所冇波段的直方图与另一幅图像所冇对应波段类似。直方图匹配经常作为相 邻图像拼接或应用多时相遥感图像进行动态变化研究的预处理工作,通过直方图匹配可以部分消除 由于太阳高度角或大气影响造成的相邻图像的效果差异。主成分变换是一种常用的数据压缩方法,它可以将具有相关性的多波段数据压缩到完全独立的 较少的儿个波段上,使图像数据更易于解译。缨帽变换是针对植物学家所关心的植被图像特征,在植被研究中将原始图像数据结构轴进行旋 转,优化图像数据显示效果。该变换的基木思想是:多波段(n波段)图

16、像可以看作是n维空间, 每一个象元都是n维空间中的一个点,其位置取决于象元在各个波段上的数值。色彩变换是将遥感图像从红(r)、绿(g)、蓝(b) 3种颜色组成的彩色空间转换到以亮度(1)、 色度(h)、饱和度(s)作为定位参数的彩色空间,以便使图像的颜色与人眼看到的更为接近。缨帽 变换有效地抑制地形效应和增强岩石单元的波段差界,并通过彩色编码增强处理达到最佳的图像显 示效果。指数计算是应用一定的数学方法,将遥感图像中不同波段的灰度值进行各种组合运算,计算反 映矿物及植被的常用比率和指数。指数计算后大部分地物不能显示,只有一少部分显示出来。四、实验思考:列举某一种增强方法都包括哪些算法,采用不同

17、算法操作示增强效果的具体差 异在里?(可附图并用定性语言表达)erdas imagine所提供了多种卷积算子,分为3*3、5*5和7*7三组,每组又包括edge detect. edge enhance> low pass、 high pass、horizontal、vertical、summary 等多种不同的处理方 式。选取了 3*3 edge detect > 3*3 edge enhance > 3*3 low pass、3*3 high pass、3*3、hori zontal、 3*3 vertical六种增强处理方法,对比六幅图可看出,边缘检测处理后图像各个方向

18、增强效果棊木 和同,边缘增强处理后图像的边缘部分得到增强,水平增强处理后图像在水平方向具有明显的纹理, 垂直增强处理后图像在垂直方向具有明显的纹理。edge detectedge enhancelow passhigh passhorizo ritalvertical九、实验思考:植被指数都有哪些计算方式?如何理解植被指数图?1、归一化植被指数(ndv1)2、增强型植被指数(evi)3、高光谱归一化植被指数(hyp.ndvi)4、比值植被指数(ratio vegetation indexrv1)该植被指数能够充分表现植被在红光和近红外波段反射率的差异,能增强植被打土壤背景z间的辐射差界。但是对

19、大气状况很敏感,而l 当植被覆盖小于50%时,它的分辨能力显著下降。差值植被指数(difference vegetation indexdvi)该植被指数对土壤背景的变化极为徴感,有利于对植被住态环境的监测,因此乂被称为环境植被指数(ev1)o5、土壤调整植被指数(soil-adjusted vegetation indexsavi)6、修正土壤调整植被指数(modified soil-adjusted vegetation indexms avi)7、差值环境植被指数(dv1evi)目的是解释背景的光学特征变化并修正ndvi对土壤背 景的敏感。8、绿度植被指数(gv1)9、垂直植被指数(pv

20、i)植被指数图可以检测波段的斜率信息并加以扩展,以突出不同波段间地物光谱的差界,提高对 比度。植被指数运算常用于突出遥感影像屮的植被特征、提取植被类别或估算植被牛物量,另外该 运算对于去除地形影响也非常有效。实验五遥感影像的镶嵌一、实验h的通过操作,掌握遥感图象镶嵌处理的过程和方法。二、实验原理遥感图象镶嵌处理是要将具有地理参考的若t相邻图像合并成一幅图像或一组图像,在进行图 像镶嵌时,需要确定一幅参考图像,参考图像将作为输出镶嵌图像的基准,决定镶嵌图像的对比度 匹配,以及输出图像的地图投影、象元大小和数据类型。三、实验结果讨论:附镶嵌后图。镶嵌分类的冃的是什么?冇哪些方法可以进行镶嵌时的影像

21、匹配 工作?镶嵌分类是将多种遥感平台,多时相遥感数据之间以及遥感数据与非遥感数据之间的信息组合 匹配的技术。镶嵌分类可以发挥不同遥感数据源的优势,弥补某种遥感数据的不足,提高遥感数据的 应用性;还冇利于综合分析和深入理解遥感数据。常用的图像镶嵌分类方法冇:基于控制点的匹配方式、基于矩阵的配准方式、基于边缘的配准 方式、基于相似性判据最优化的方式。其中颜色校正的方法有exclude areas> use image dodging> use color balancing、use histogram matching, 内插的方法有 nearest neighbor> bili

22、near interpolations cubic convolution> bicubic spline。不同传感器遥感信息的复合方法有彩色合 成法、代换法。不同时相遥感数据的复合方法有彩色合成法、差值法、比值法。实验六遥感图像分类监督分类一、实验目的理解计算机图像分类的棊木原理以及监督分类的过程,达到能熟练地对遥感图像进行监督分类 的目的。二、实验原理遥感图像计算机分类的依据是遥感图像像素的相似度。相似度是两类模式之间的和似程度。在 遥感图像分类过程中,常使用距离和相关系数来衡量相似度。遥感图像的计算机分类方法包括监督分类和非监督分类。监督分类方法首先需要从研究区域选 取有代表性的训

23、练场地作为样木。根据已知训练区捉供的样木,通过选择特征参数(如像素亮度均 值、方差等),建立判别函数,据此对数字图像待分像元进行分类,依据样木类别的特征來识别非样 本像元的归属类别。这种方法称为监督分类。监督分类包括利用训练区样木建立判别函数的“学习”过程和把待分像元代入判别函数进 行判別过程。监督分类中常用的具体分类方法包括:最小距离分类法,多级切割分类法,特征曲线窗 口法,最大似然比分类法。三、实验结來讨论:附分类模板图。选择分类模板时有哪些注意事项?在原始图像和特征空间中选 择模板有什么不同?file edit view evaluate feature classify help诊口

24、+u +- =u £ g 观 class it >siqnature namecolorredgreenbluevalueorder>三>城市用地0.9330.5100.93310102黄河1.0001.0000.00011313滩地0.7530.7530.75317754水田0.0340.2650.3069845未利用地1.0001.0001.00089267水体0.0000.0001.00014102林地0.0000.3920.0001211080.0001.0000.00013118load a signature set from a file在选择分类模板

25、时要注意以下儿点:分类模板所包含的样木在种类上要与待分区域的类别一致: 准确性;样木应在各类地物而积较大的中心选取,而不应在地物混交地区和类别的边缘选取,以保 证特征具有典型性,从而能进行准确的分类:代表性;样木数目应能提供各类足够的信息和克服各 种偶然因索的影响:统计性。另外所选择的样木应满足下列要求:样木像元应具冇代表性,避免集 中局部;对n个波段进行分类,样本量不少于10n个像元,到达100n个像元更好。具冇良好的统计 性。在原图像上应用a0i区域产纶分类模板是参数型模板,而在特征空间图像上应用a01工具产生 分类模板则属于非参数型模板。四、实验结果讨论:附监督分类图。监督分类的难点在哪

26、里?与目视解译工作有什么联系?分类时的误差主要出在哪些方而?监督分类棊于先验知识,根据训练场地提供的样木选择特征参数,建立判别函数,对待分类点 进行分类。训练场地的选择是监督分类的关键,在监督分类中训练样木的不同,分类结果会出现极 人地差界,因此应选収有代表性的样木,用于监督分类的训练样木应是光谱特征比较均匀的地区, 在图像中根据均已的颜色估计只有一类地物,且一类的训练样本可以选取一块以。此外,训练样本 的数目至少能满足建立分类用判别函数的要求,对于光谱特征变化比较人的地物,训练样木要足够 多,以反映其变化范阳。监督分类要求在分类之前要对遥感图像上某些抽样区屮影像地物的类别属 性已冇了先验的知

27、识,这些先验知识通常是通过实地的抽样调查,配合人工hl视判读技术来获得的。 分类误差主要是山于主观性以及图像中间类别的光谱差界,使得训练样本没有很好的代表性;分类 模板的选择极为重要,若分來模板选择不够粹确,则容易造成较大的误差。实验七遥感图像分类非监督分类一、实验目的进一步理解计算机图像分类的基本原理以及监督分类的过程,达到能熟练地对遥感图像进行监 督分类的冃的,同时深刻理解监督分类与非监督分类的区别。二、实验原理非监督分类是在没冇先验类別(训练场地)作为样木的条件下,即事先不知道类别特征,主要根 据像元间相似度的人小进行归类合并(将相似度大的像元归为一类)的方法。非监督分类的询提是假定遥感影像上同类物体在同样条件下具有相同的光谱信息特征。非监督 分类方法不必对影像地物获取先验知识,仅依靠影像上不同类地物光谱信息(或纹理信息)进行特 征提取的统计特征的差别来达到分类的h的,最后对已分出的各个类别的实地属性进行确认。非监 督分类主要采用聚类分析方法,聚类是把一组像索按照相似性归成若干类别,即“物以类聚”。它 的目的是使得属于同一类别的像素之间的距离尽可能的小而不同类别上的像素间的距离尽可能的 大。常用的方法有:分级集群法,动态聚类法。三、实验结果讨论:附非监督分类图。监督分类与非监督分类的原理与上机操作时的区

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论