成人高考数学实用教案_第1页
成人高考数学实用教案_第2页
成人高考数学实用教案_第3页
成人高考数学实用教案_第4页
成人高考数学实用教案_第5页
已阅读5页,还剩117页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、课程(kchng)作用数学复习课 旨在帮助学生熟悉并快速掌握中学数学基础知识、基本技能、基本方法,提高数学思维能力,包括:空间(kngjin)想象、直觉猜想、归纳抽象、符号表示、运算求解、演绎证明、体系构建等,以及运用所学数学知识和方法分析问题和解决问题的能力。第1页/共121页第一页,共122页。学情分析(fnx) 1、学生层次参次不齐,个体差异比较明显,在概念的掌握上缺少系统性、严谨性,故而整个教学环节应紧扣考试试题(sht)结构,通过难易程度适宜、通俗易懂的教学方法,使学生快速熟悉、了解考点,重点讲解做题方法、思路及技巧,引导学生积极思考,培养他们的逻辑思维能力。 2、整个教学环节应紧扣

2、考试试题(sht)结构,通过难易程度适宜、通俗易懂的教学方法,使学生快速熟悉、了解考点,重点讲解做题方法、思路及技巧,引导学生积极思考,培养他们的逻辑思维能力。第2页/共121页第二页,共122页。(一)考试(kosh)采用闭卷形式,全卷满分为150分,考试(kosh)时间为120分钟 (二)题型比例:选择题:约55% (17题,5分/题)填空题:约10% (4题,4分/题)解答题:约35% (4题)(三)试题难易比例较容易题:约40%中等难度题:约50%较难题:约10%考试结构(jigu)分析第3页/共121页第三页,共122页。考试(kosh)结构分析教学(jio xu)重点教学(jio

3、xu)难点第4页/共121页第四页,共122页。教学计划(jio xu j hu)总课时:10课时(知识点熟悉及习题(xt)讲解3课时+试卷讲解7课时)第5页/共121页第五页,共122页。教学计划(jio xu j hu)第6页/共121页第六页,共122页。1、知识目标 了解:要求考生对所列知识的含义有初步的认识,识记有关内容,并能进行直接运用(ynyng)。 理解、掌握、会:要求考生对所列知识的含义有较深的认识,能够解释、举例或变形、推断,并能运用(ynyng)知识解决有关问题。 灵活运用(ynyng):要求考生对所列知识能够综合运用(ynyng),并能解决较为复杂的数学问题。 课程目标

4、第7页/共121页第七页,共122页。2、能力目标 通过采用习题(xt)讲解、讲练结合、启发探究、归纳总结、学以致用等教学方法,使学生在积极活跃的思维过程中,从“温故”到“理解”到“掌握”,最终能够基本掌握知识点并熟练运用。3、情感、态度和价值观(1)通过讲练结合、自主探究与合作交流的教学环节的设置,激发学生的学习热情和求知欲,充分体现并发挥学生的主体地位;(2)通过数形结合的思想和方法的应用,让学生感受数学的魅力,培养学生养成灵活的数学思维习惯和能力。第8页/共121页第八页,共122页。(一)教法基于本科目的内容特点和学生的知识掌握层次,依据学情分析,采用习题讲解、讲练结合、启发探究、归纳

5、总结、学以致用(xu y zh yng)教学法为主来完成教学:1、整个教学环节应紧扣考试试题结构,通过难易程度适宜、通俗易懂的教学方法,激发学生求知欲,调动学生主体参与的积极性使学生快速熟悉、了解考点;2、熟悉知识点过程中,紧扣考试大纲要求,查漏补缺,通过讲练结合重点讲解做题方法、思路及技巧,启发探究,引导学生积极思考、归纳总结,培养他们的逻辑思维能力。3、在鼓励学生主动思考的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达教法(jio f)、学法分析第9页/共121页第九页,共122页。(二)学法在学法上重点注意:1、让学生利用真题演练,并通过归纳总结(z

6、ngji),举一反三,来熟悉考点,培养解题的思维。 2、让学生从问题中质疑、尝试、归纳、总结(zngji)、运用,培养学生发现问题、研究问题和分析解决问题的能力。第10页/共121页第十页,共122页。课堂(ktng)设计1、例题演练:例题讲解,讲练结合2、引导学生思考:启发探究,查漏补缺3、知识点掌握(zhngw):考情点播,应试指导4、同类题目演练:举一反三,归纳总结5、课后作业:温故知新,学以致用6、模拟考试演练:适应环境,达到目标第11页/共121页第十一页,共122页。第一(dy)讲 集合和简易逻辑第12页/共121页第十二页,共122页。考试(kosh)复习大纲了解集合的意义及表示

7、方法。了解空集、全集、子集、交集、并集、补集的概念及表示方法,了解符号 的含义,并能运用这些符号表示元素与集合,集合与集合的关系;了解充分条件(chn fn tio jin),必要条件,充分必要条件的概念。,第13页/共121页第十三页,共122页。热 点 播 报l 以填空题、选择题的形式考查集合的交、 并、补运算;l 以集合为载体,考查函数(hnsh)的定义域以及方程、不等式、曲线的知识交汇问题;l 以考查集合的概念为主,同时考查集合语言和集合思想的运用。第14页/共121页第十四页,共122页。本章(bn zhn)复习提纲 集合的概念 集合的表示法 集合与集合的关系(gun x) 集合与集

8、合的运算 简易逻辑第15页/共121页第十五页,共122页。一、集合(jh)的概念通常把由某些确定(qudng)的对象组成的整体叫做集合(简称集)组成集合的对象叫做这个集合的元素一般采用大写英文字母A,B,C表示集合, 小写(xioxi)英文字母a,b,c 表示集合的元素. 集合的性质:确定性;互异性;无序性第16页/共121页第十六页,共122页。.元素a是集合A 的元素,记作aA,读作a属于A. 元素与集合 元素a不是集合A 的元素,记作a A,读作a不属于A.元素与集合的关系 第17页/共121页第十七页,共122页。有限(yuxin)集:无限集:空集:数集:含有有限个元素(yun s)

9、的集合含有无限(wxin)个元素的集合元素为数的集合不含任何元素的集合,记作一些特殊的集合第18页/共121页第十八页,共122页。实数集:有理数集:整数(zhngsh)集:正整数(zhngsh)集:自然数集:(注:自然数包括0,故 0N ,自然数集为非负整数(zhngsh)集)全体正整数组成(z chn)的集合,用“ N+ ”表示;全体实数组成的集合(jh),用“ R ”表示;全体有理数组成的集合,用“ Q ”表示;全体整数组成的集合,用“ Z ”表示;全体自然数组成的集合,用“ N ”表示 ;常用的数集第19页/共121页第十九页,共122页。 元素a是集合A的元素, aA,属于元素a不是

10、集合A的元素, a A,不属于0 N; 0.6 Z; R; Q; 130 .”或“用符号“”填空: 第20页/共121页第二十页,共122页。例如:“不大于3的自然数”这个集合元素(yun s)为:0、1、2、3,用列举法可表示为:0,1,2,3 把集合的元素(yun s)一一列举出来,写在大括号内,元素(yun s)之间用逗号隔开 .列举(lij)法: 大括号内画一条竖线,竖线的左侧为集合的代表元素,竖线的右侧为元素所具有的特征性质. 描述法:这里的代表元素一般用 x , y 表示,例如:“不大于3的整数”这个集合的元素无法一一列举,但具有明显特征:1、均为整数;2、均不大于3。故用描述法可

11、表示为: |3,x xxZ图像法:第21页/共121页第二十一页,共122页。ABABBA BA包含;包含于如果集合B的元素都是集合A的元素,那么(n me)称集合A包含集合B,并把集合B叫做集合A的子集.ABAAA 三、集合(jh)与集合(jh)的关系如果集合B是集合A的子集,并且(bngqi)集合A中至少有一个元素不属于集合B,那么把集合B叫做集合A的真子集.B A B真包含于A真子集-真包含关系常见几种数集之间的关系:N Z Q R第22页/共121页第二十二页,共122页。.“”与“”用来表示元素与集合之间关系的符号 第23页/共121页第二十三页,共122页。例 写出集合a,b,c的

12、所有(suyu)子集,并指出真子集解: a,b,c的所有子集是:没有元素的集合:;只有(zhyu)一个元素的集合:a; b; c;只有(zhyu)两个元素的集合:a,b; a,c; b,c; 只有(zhyu)三个元素的集合: a,b,c.其中(qzhng)真子集为:;a; b; c;a,b; a,c; b,c;即除了集合 a,b,c(自身)之外所有子集第24页/共121页第二十四页,共122页。空集(kn j) 与 的区别与联系第25页/共121页第二十五页,共122页。ABAB等 于第26页/共121页第二十六页,共122页。一般(ybn)地,对于两个给定的集合A、B,由集合A、B 的相同元

13、素所组成的集合叫做A与B的交集,记作AB (读作“A交B”) .BxAxxBA且集合(jh)的交集 四、集合(jh)与集合(jh)的运算第27页/共121页第二十七页,共122页。 1、(2002成考题)设集合(jh) ,集合(jh) ,则 等于( )(A) (B) (C) (D)2、(2006成考题)设集合(jh) , ,则集合(jh) ( )(A) (B) (C) (D)2 , 1A5 , 3 , 2BBA21,2,3,51,32,5M=1012 , , ,N= 0,12 3, ,MN=01 ,012, ,101 , ,1012 3 , , , ,AB第28页/共121页第二十八页,共12

14、2页。ABx xAxB或 一般地,对于两个给定的集合A、B,由集合A、B的所有元素组成(z chn)的集合叫做集合A与集合B的并集,记作AB (读作“A并B”) .集合(jh)的并集 第29页/共121页第二十九页,共122页。 1、(2008成考题(ko t))设集合 ,集合 ,则 等于( )(A) (B)1,2,3,4,6 (C) (D)2、(2003成考题(ko t))设集合 ,集合 ,则集合M与集合N的关系为( ) (A) (B) (C) N M (D)M N2,4,6A 1,2,3B AB42,4,61,2,3BD22( , )1Mx y xy22( , )2Nx y xyMN=MM

15、N=第30页/共121页第三十页,共122页。、. 交集和并集有什么区别?(含义和符号 ) 1集合交运算和并运算各自的特点是什么?2AB= x | x A 且 x B AB= x | x A 或 x B交运算是要寻找两个集合相同元素; 并运算是将两个集合中所含的所有的元素进行合并.第31页/共121页第三十一页,共122页。 1、(2001成考题(ko t))设集合 , , ,则 ( )(A) (B) (C) (D)1,2,3,4,5M 2,4,6N ()MTN 2,4,5,64,5,61,2,3,4,5,62,4,6AT=4,5,6第32页/共121页第三十二页,共122页。 如果一个集合含

16、有我们所研究的各个集合的全部元素,在研究过程中,可以将这个(zh ge)集合叫做全集,一般用U来表示,所研究的各个集合都是这个(zh ge)集合的子集.全集(qunj) 第33页/共121页第三十三页,共122页。UAx xUxA且. 如果(rgu)集合A是全集U子集,那么,由U中不属于A的所有元素组成的集合叫做集合A在全集U中的补集.补集 第34页/共121页第三十四页,共122页。五、 简易(jiny)逻辑条件与结论:充分条件(chn fn tio jin):必要条件:充要条件:第35页/共121页第三十五页,共122页。. 条件(tiojin) p,结论 q” 条件(tiojin)结论(

17、jiln)成立成立 p q p 是 q 的充分条件成立成立 p 是 q 的必要条件 p q成立成立 p q p 是 q 的充要条件第36页/共121页第三十六页,共122页。.xyxyxyxy2020 xxxx?P是Q的充分(chngfn)不必要条件P是Q的必要(byo)不充分条件第37页/共121页第三十七页,共122页。1、(2007成考题(ko t))若 为实数,设甲: ;乙: , ,则 ( )xy、220 xy0 x 0y (A)甲是乙的必要条件,但不是乙的充分条件(chn fn tio jin); (B)甲是乙的充分条件(chn fn tio jin),但不是乙的必要条件;(C)甲不

18、是乙的充分条件(chn fn tio jin),也不是乙的必要条件; (D)甲是乙的充分必要条件。D第38页/共121页第三十八页,共122页。1、(2003成考题(ko t))设甲: 且 ;乙:直线 与直线 平行,则 ( )(A)甲是乙的必要条件但不是乙的充分条件(chn fn tio jin); (B)甲是乙的充分条件(chn fn tio jin)但不是乙的必要条件;(C)甲不是乙的充分条件(chn fn tio jin)也不是乙的必要条件; (D)甲是乙的充分必要条件。 B1k 1b ykxbyx第39页/共121页第三十九页,共122页。第二(d r)讲 函数第40页/共121页第四

19、十页,共122页。考试复习(fx)大纲1了解(理解)函数的概念,会求一些(yxi)常见函数的定义域。2了解函数的单调性和奇偶性的概念,会判断一些(yxi)常见函数的单调性和奇偶性。3理解一次函数、反比例函数的概念,掌握它们的图像和性质,会求他们的解析式。4理解二次函数的概念,掌握它们的图像和性质以及函数 与 的图像间的关系;会求二次函数的解析式及最大值或最小值。能(灵活)运用二次函数的知识解决有关问题。5了解反函数的意义,会求一些(yxi)简单函数的反函数。6理解分数指数幂的概念,掌握有理指数幂的运算性质。掌握指数函数的概念、图像和性质。7理解对数的概念,掌握对数函数的运算性质。掌握对数函数的

20、概念、图像和性质。)0(2acbxxay)0(2axay第41页/共121页第四十一页,共122页。本章(bn zhn)复习提纲 函数的概念(ginin) 函数的性质 基本函数图象和性质第42页/共121页第四十二页,共122页。一、函数(hnsh)的概念(1 1)理解函数的有关概念;(2 2)理解函数定义域的意义,掌握(zhngw)(zhngw)求函数定义域的一般步 骤;(3 3)会用配方法、换元法和判别式法等求函数的值域第43页/共121页第四十三页,共122页。 通常(tngchng)记为: yf (x),xA一般地,设 A,B是两个非空的数集,如果按某种对应法则 f,对于集合A中的每一

21、个元素(yun s) ,在集合B中都有惟一的元素(yun s)和它对应.这样的对应叫做从A到B的一个函数. 所有(suyu)的输入值 x 组成的集合叫做函数yf (x)的定义域 所有的输出值y 组成的集合叫做函数yf (x)的值域第44页/共121页第四十四页,共122页。1.函数(hnsh) 是多项式函数(hnsh),则定义域为一切实数;)(xfy 2.函数 是分式函数,则定义域为使分母(fnm)不为0的所有自变量 的集合;)(xfyx3.函数(hnsh) 中,含有偶次方根,则定义域为使偶次方根下不为负的所有自变量 的集合;x)(xfy 4.函数 中,含对数,则定义域为使真数大于零的所有自变

22、量 的集合。x)(xfy 第45页/共121页第四十五页,共122页。2函数(hnsh)的性质(1)理解(lji)函数的单调性,并会判定及应用;(2)理解(lji)函数的奇偶性,并会判定及应用;(3)利用函数的性质灵活解决问题第46页/共121页第四十六页,共122页。函数 定义在区间(q jin)I 上,若对任意 ,都有,则称函数 在区间(q jin)I上是单调增函数;若对 , 都有 ,则称函数 在区间(q jin)I上是单调减函数。 2121,xxIxx且)(xfy )()(21xfxfm)(xfy y)(1xf)(xfy )()(21xfxf21xx o)(xfy x2x1xn)(2xf

23、o)(xfy 1x2x)(1xf)(2xfxy第47页/共121页第四十七页,共122页。yxoyy=2x+1xoy=(x-1)2-112-1yxy =x3oyOxx1y 增区间(q jin)为(,) 增区间(q jin)为增区间(q jin)为(,) 1,)减区间为(,1减区间为(,0),(0,)例1:写出函数的单调区间第48页/共121页第四十八页,共122页。3. 给出结论(jiln). 的结果化积或化完全平方式的和;结论一定要指出在那个区间上。2121,xxxx且)()(21xfxf第49页/共121页第四十九页,共122页。22yxx例求出下列(xili)函数的最小值(1)评述:结合

24、函数图象利用函数的单调性、利用二次函数(即配方法)求函数值域是两种最基本的方法,应理解(lji)和掌握,并注意格式要求第50页/共121页第五十页,共122页。1.偶函数定义: 如果对于 定义域内的任意一个(y ) , 都有 , 那么函数 就叫偶函数.2.奇函数定义: 如果对于 定义域内的任意一个 , 都有 那么(n me)函数 就叫奇函数.x)(xf)(xf)(xf)()(xfxf),()(xfxf)(xfx第51页/共121页第五十一页,共122页。3.两个性质:一个函数为奇函数 它的图象关于(guny)原点对称。一个(y )函数为偶函数 它的图象关于y 轴对称。第52页/共121页第五十

25、二页,共122页。思考题:1.已知y=f(x)是偶函数(hnsh),且在(-,0)上是增函数(hnsh),则 y=f(x)在(0,)上是 ( ) A.增函数(hnsh) B.减函数(hnsh) C.非单调函数(hnsh) D.单调性不确定2.已知y=f(x)是奇函数(hnsh),且在(-,0)上是增函数(hnsh),则 y=f(x)在(0,)上是 ( ) A.增函数(hnsh) B.减函数(hnsh) C.非单调函数(hnsh) D.单调性不确定BA第53页/共121页第五十三页,共122页。3.3.基本函数(hnsh)(hnsh)图象和性质(1)一次函数(hnsh)(2)二次函数(hnsh)

26、(3)指数函数(hnsh)(4)对数函数(hnsh)(5)反函数(hnsh)第54页/共121页第五十四页,共122页。 2、正比例函数(hnsh)y=kx(k0)的图象是过点(_),(_)的_。 3、一次函数(hnsh)y=kx+b(k0)的图象是过点(0, b ),(_,0)的_。1、一次函数的概念:函数y=_(k、b为常数(chngsh),k_)叫做一次函数。当b_时,函数y=_(k_)叫做正比例函数。kx b=kx0,01,k 一条(y tio)直线一条直线kb第55页/共121页第五十五页,共122页。y=kx(k0)的性质:当k0时,图象过_象限(xingxin);y随x的增大而_

27、。当k0时,y随x的增大而_。当k0时,y随x的增大而_。增大减小第56页/共121页第五十六页,共122页。定义(dngy):形如 的函数 )0(2acbxaxy)0()(2akhxay1.二次函数(hnsh)的解析式 ) 0)()(21axxxxay)0(2acbxaxy第57页/共121页第五十七页,共122页。_对称轴向下(xin xi)向上(xingshng)开口(ki ku)性质a0图象yax2bxc(a0)函数2二次函数的图象和性质当_时,y 随 x的增大而减小当_时,y 随 x的增大而增大增减性_顶点坐标性质第58页/共121页第五十八页,共122页。续表小性质第59页/共12

28、1页第五十九页,共122页。3.系数 a,b,c 的几何(j h)意义aa,b右c(1)开口方向(fngxing):_的符号决定抛物线的开口方向(fngxing)(2)当_同号时,对称轴在 y 轴左边;当 a,b 异号时,对称轴在 y 轴_边(3)_的符号(fho)确定抛物线与 y 轴的交点在正半轴或负半轴或原点第60页/共121页第六十页,共122页。5.yax2 和 ya(xh)2k 的图象(t xin)关系左上ya(xh)2k 的图象(t xin)两个(lin )两个相等的实数根06二次函数与一元二次方程的关系第61页/共121页第六十一页,共122页。),(Znmaaanmnm),()

29、(Znmaamnnm).()(Znbaabnnn1.整数指数幂的运算(yn sun)性质:指数nmnmaa (a0, m, nN*, 且n1) 第62页/共121页第六十二页,共122页。 2. 正数(zhngsh)的正分数指数幂的意义:nmnmaa (a0, m, nN*, 且n1) 注意两点:(1)分数指数幂是根式(gnsh)的另一种表示形式;(2)根式(gnsh)与分数指数幂可以进行互化.指数第63页/共121页第六十三页,共122页。3. 对正数(zhngsh)的负分数指数幂和0的分数指数幂的规定:(1)(2) 0的正分数指数幂等于(dngy)0;(3) 0的负分数指数幂无意义(yy)

30、nmnmaa1(a0, m, nN*, 且n1) 第64页/共121页第六十四页,共122页。1. 指数函数(zh sh hn sh)的定义 一般地,函数yax(a0且a1)叫做(jiozu)指数函数,其中x是自变量,函数定义域是R.(3)若a1,则yax1是一个(y )常数函数(1)若a0,则当x0时,ax0; 当x0时,ax无意义.(2)若a0,ax没有意义对常数a的考虑:第65页/共121页第六十五页,共122页。指数函数(zh sh hn sh)的图象和性质: y1xy yax(a1)O y1xy yax(0a1)O(0,1)(0,1)第66页/共121页第六十六页,共122页。.1,

31、的的大大小小关关系系与与比比较较dcbayx)2()4()1()3(,)4( )3( )2( )(1 的图象如图为指数函数:xxxxdycybyayO第67页/共121页第六十七页,共122页。1.对数函数(du sh hn sh)的定义: 函数(hnsh)ylogax (a0且a1)叫做对数函数(hnsh),定义域为(0,),值域为(,).第68页/共121页第六十八页,共122页。2. 对数函数(du sh hn sh)的性质:定义域:(0, +); 值域:R 过点(1, 0),即当x1时,y0. 在(0,+)上是减函数(hnsh) 在(0,+)上是增函数 OOxxyyxyalogxyal

32、og第69页/共121页第六十九页,共122页。积、商、幂的对数(du sh)运算法则:如果(rgu)a0,且a1,M0,N0有:(1) loglog)(logNMMNaaa (2) logloglogNMNMaaa (3) )(loglogRnMnMana 第70页/共121页第七十页,共122页。aNNmmalogloglog(a0,a1,m0,m1,N0)1. 对数(du sh)换底公式:第71页/共121页第七十一页,共122页。1loglog)1( abba1logloglog acbcbabmnbanamloglog)2( 2. 两个常用(chn yn)的推论:(a,b0且均不为1

33、) 第72页/共121页第七十二页,共122页。反函数的定义: 一般地,式子y=f(x)表示y是自变量x的函数,设它的定义域为A,值域为C. 我们从式子y=f(x)中解出x,得到(d do)式子x=(y).如果对于y在C中的任何一个值,通过式子x=(y),x在中都有唯一确定的值和它对应,那么式子x=(y) 就表示x是自变量y的函数。这样的函数x=(y) 叫做函数y=f(x)的反函数,记作x=f -1(y), 即 x=(y)=f -1(y) 在函数式x=f -1(y)中,y表示自变量,x表示函数。但在习惯上,我们一般(ybn)用x表示自变量,用y表示函数,为此,我们常常对调x=f -1(y)中的

34、字母x,y,把它改写成y=f -1(x).函数(hnsh)y=f(x) 反函数(hnsh)的反函数(hnsh)正好是它的本身。 函数y=f(x)的定义域正好是它反函数y=f -1(x)的值域;反之,函数y=f(x)的值域也是它反函数y=f -1(x)的定义域。第73页/共121页第七十三页,共122页。1、反解:y=f(x) )(1yfx 3、写定义域:根据原来(yunli)函数的值域,写出反函数 的定义域.2、互换:x、y互换位置(wi zhi),得y=f -1(x)求反函数的步骤(bzhu):第74页/共121页第七十四页,共122页。 例1、 求下列(xili)函数的反函数第75页/共1

35、21页第七十五页,共122页。1 1函数的概念:函数的概念:考查题型:定义域、值域、最值、解析考查题型:定义域、值域、最值、解析(ji (ji x)x)式,求值问题式,求值问题. . 1 1、 (20082008年)函数年)函数 的定义域为的定义域为_。 、 (2004 (2004年年) )函数函数 的定义的定义域为域为_。3( )lgf xxx 1y1x 第76页/共121页第七十六页,共122页。3 3、(、(20062006年)对于函数年)对于函数(hnsh) (hnsh) ,当,当 时,时, 的取值范围是:的取值范围是:_xy3 x0 y2yxpx q 4、(2007年)二次函数(hn

36、sh)的图像(t xin)经过原点和(-4,0)则该二次函数的最小值为_2( )1f xx (2)_f x 5、(2005年)设函数 ,则 第77页/共121页第七十七页,共122页。 6 6、(、(20082008年)二次函数年)二次函数 的图像的图像(t xin)(t xin)经过点(经过点(1 1,2 2)和)和(-2-2,4 4),则函数的解析式为),则函数的解析式为_2yxbxc 2yx 2xy 2logyx cosyx 7、 (2008年) 下列(xili)函数中,函数值恒大于零的是( ) A. B. C. D. 函数的性质函数的性质(xngzh):图像,奇偶性,单调性,反函数图像

37、,奇偶性,单调性,反函数第78页/共121页第七十八页,共122页。 8 8、(2008(2008年年) )下列下列(xili)(xili)函数为奇函数的是:(函数为奇函数的是:( )A. B. C. D. A. B. C. D. 23yx 3xy 3logyx 3sinyx 2xy 1816 9、(2007年)指数函数(zh sh hn sh) 的图像过点()A、(-3, ) B、(-3 , ) C、(-3,-8) D、(-3,-6) 第79页/共121页第七十九页,共122页。 10 10、(、(20072007年)年) ( ) ( ) A A、3 B3 B、2 C2 C、1 D1 D、

38、0 01212、(、(20072007年)函数年)函数(hnsh) (hnsh) 的反函数的反函数(hnsh)(hnsh)为(为( ) A A、 B B、 C C、 D D、 0441log 8log 2()4 2log1(0)yxx 2log1(0)yxx 12xy 2log1(0,1)yxxx 2log1(0,1)yxxx 第80页/共121页第八十页,共122页。第三(d sn)讲 不等式和不等式组第81页/共121页第八十一页,共122页。考试(kosh)复习大纲了解不等式的性质。会解一元(y yun)一次不等式、一元(y yun)一次不等式组和可化为一元(y yun)一次不等式组的不

39、等式,会解一元(y yun)二次不等式。会表示不等式或不等式组的解集。会解形如 或 的绝对值不等式+axbcax bc 第82页/共121页第八十二页,共122页。热 点 播 报l 以填空题、选择题的形式考查不等式的性质与运算;l 以不等式为载体,考查函数的定义域以及集合(jh)的表示。第83页/共121页第八十三页,共122页。 不等式的概念与性质 一元一次不等式及其解法 一元一次组不等式及其解法 含有绝对值的不等式 一元二次不等式及其解法 两种常见(chn jin)的不等式及区间第84页/共121页第八十四页,共122页。第85页/共121页第八十五页,共122页。.不等式的性质由基本性质

40、(xngzh),我们可以证明得到下面的性质(xngzh)第86页/共121页第八十六页,共122页。(20052005年选择第年选择第9 9题)题) 设设 ,且,且 则下列各不等式中,一定则下列各不等式中,一定(ydng)(ydng)成立的是(成立的是( ) A A、 B B、 C C、 D D、a bR 、ab 22ab (0)acbc c 11ab 0a b B第87页/共121页第八十七页,共122页。由不等式的解组成的集合叫做不等式的解集如果两个不等式的解集相同,那么这两个不等式叫做同解不等式将一个不等式变为另一个与它同解的不等式的过程叫做同解变形同解原理 不等式两边都加上(减去)同一

41、个数或同一个整式 不等式两边都乘以(除以)同一个正数 不等式两边都乘以(除以)同一个负数(fsh),改变不等号方向不等式第88页/共121页第八十八页,共122页。定义(dngy) 只有一个未知数(一元),不等式未知数的最高次数为1(一次)的不等式解法:经过(jnggu)同解变形,例如去分母,去括号,移项、合并同类项、不等式两边都除以未知系数(为负数时,改变不等号方向)等,得到形如 或 , 然后进行求解。(0)axbaxb a 第89页/共121页第八十九页,共122页。形如 的解集为:形如 的解集为:形如 或 的不等式的解 (0)axbaxb a (0)axba bxa (0)axba bx

42、a xba ba x第90页/共121页第九十页,共122页。定义 由几个一元(y yun)一次不等式所组成的不等式组,叫做一元(y yun)一次不等式组解法:分别对组成一元(y yun)一次不等式组的几个一元(y yun)一次不等式进行求解,然后综合几个一元(y yun)一次不等式的解集,得到一元(y yun)一次不等式组的解集。第91页/共121页第九十一页,共122页。一元一次方程组的解可以化为以下(yxi)四种情况()mn不妨设形如 ,此时(c sh)解集为 形如 ,此时(c sh)解集为 ,xmxn,xmxnxnxnmxnmxm第92页/共121页第九十二页,共122页。形如 ,此时

43、(c sh)解集为 形如 ,此时(c sh)解集为 ,xmxn,xmxnmxnxnmxnm第93页/共121页第九十三页,共122页。 (20052005年选择年选择(xunz)(xunz)第第2 2题)题) 1 1不等式组不等式组 的解集为(的解集为( )A A、 B B、C C、(、(3 3,5 5) D D 、33,55 3274521xx (,3) (5,) (,3(5,) C第94页/共121页第九十四页,共122页。1、形如 的不等式及其解法(ji f),xa xa(1) 0a 当 时xa的解集为axa xaxaxa 或 的解集为(2) 0a 当 时xa的解集为 0a (3)当 时

44、xa的解集为R 0a 当 时xa的解集为0 x 第95页/共121页第九十五页,共122页。2、形如 的不等式及其解法(ji f),axbc axbc(1)、解不等式 相当于解不等式axbc,axbccaxbcaxbc 即 (2)、解不等式 相当于解不等式axbcaxbcaxbc 或 第96页/共121页第九十六页,共122页。BD第97页/共121页第九十七页,共122页。定义 只有一个未知数(一元(y yun)),不等式未知数的最高次数为2(二次)的不等式解法:经过同解变形,得到形如 或 ,然后进行(jnxng)求解。20(0)axbxca20(0)axbxca注: 的情况可以通过乘以-1

45、,改变不等号方向转化成 的情形进行求解。0a 0a 第98页/共121页第九十八页,共122页。形如的 以及(yj) 的一元二次不等式的解集:20(0)axbxca20(0)axbxca此时一元二次不等式的解与一元二次方程的判别式 以及一元二次函数(hnsh)的图象有关20axbxc24bac2yaxbxc第99页/共121页第九十九页,共122页。0方程(fngchng)有两个根x1和x200方程(fngchng)无实根 方程ax2+bx+c=0的根函数y=ax2+bx+c的图像不等式ax2+bx+c0的解12(,)(,)xx00(,)(,)xxR方程(fngchng)有一个根x024bac

46、第100页/共121页第一百页,共122页。.acb42三个二次 000cbxaxy202cbxax02cbxax1212,2()bxxaxxabxx221x0y0yyx01x2x0yx0y0yab2无 实 根12(,)(,)xx00(,)(,)xx12(,)x xR02cbxax0y 第101页/共121页第一百零一页,共122页。六、两种常见六、两种常见(chn jin)的不等式的不等式1、形如 的不等式的解法(ji f)()()0(0)axb cxd这种形式的不等式可以根据一元二次方程 的两根情况以及 的系数 的正负(zhn f)来确定其解集。()()=0axb cxd2xac例如 1、

47、 2、 (31)(3)0 xx(5)(32 )0 xx第102页/共121页第一百零二页,共122页。2、形如 的不等式的解法(ji f)()0(0)()axbcxd这种形式的不等式与第一种形式,即是同解不等式,因此可以转化为 的不等式进行(jnxng)求解()()0(0)axb cxd()()0(0)axb cxd第103页/共121页第一百零三页,共122页。实数(shsh)的集合记作区间:由数轴(shzhu)上两点间的一切实数所组成的集合叫做区间.其中,这两个点叫做区间端点.开区间:满足不等式 的所有实数(shsh)的集合 axb |x axb( , )a b记作闭区间:满足不等式 的所

48、有实数的集合 axb |x axb , a b记作右(左)开区间:满足不等式 的所有axb |x axb , )a b()axb或( |)x axb或( , )a b或第104页/共121页第一百零四页,共122页。 第 四讲 导 数第105页/共121页第一百零五页,共122页。1 1了解函数极限的概念,了解函数连续的意义了解函数极限的概念,了解函数连续的意义2 2理解导数的概念及几何意义。理解导数的概念及几何意义。3 3会用基本导数公式(会用基本导数公式( (c c为常数)为常数), , , , 的导数),掌握的导数),掌握(zhngw)(zhngw)两个函数的和、两个函数的和、差、积、差

49、、积、 商的求导法则。商的求导法则。4 4了解(理解)极大值、极小值、最大值、最小值的概念,并会用导数了解(理解)极大值、极小值、最大值、最小值的概念,并会用导数 求多项式函数(有关函数)的单调区间、极大值、极小值、及闭区间求多项式函数(有关函数)的单调区间、极大值、极小值、及闭区间 上的最大值、最小值。上的最大值、最小值。5 5会求有关曲线的切线方程,会用导数求简单实际问题的最大值与最小值。会求有关曲线的切线方程,会用导数求简单实际问题的最大值与最小值。()nyx nN ycsinyxsy co xxye 考试(kosh)复习大纲第106页/共121页第一百零六页,共122页。一.知识(zh

50、 shi)网络:导数(do sh)导数(do sh)的概念函数的瞬时变化率函数的平均变化率运动的瞬时速度曲线的切线的斜率运动的平均速度曲线的割线的斜率导数的运算基本初等函数的求导导数的四则运算法则简单复合函数的导数导数的应用函数的单调性研究函数的极值与最值导数的运算曲线的切线变速运动的速度最优化问题第107页/共121页第一百零七页,共122页。1.导数(do sh)的概念:(1)函数(hnsh) 在 处的增量:)(xfy 0 x)()(00 xfxxfy(2)平均(pngjn)变化率: 函数 从 到 的平均(pngjn)变化率:)(xfy 0 xxx0 xxfxxfxy)()(00其几何意义

51、:函数图象上过点 和 的割线的斜率。)(,(00 xfx)(,(00 xxfxx第108页/共121页第一百零八页,共122页。(3)函数(hnsh) 在 处的瞬时变化率:)(xfy 0 xx xxfxxfxyxx)()(limlim0000(4)函数(hnsh) 在 处的导数:xxfxxfyxfxxx)()(lim)(00000其本质是函数(hnsh) 在 处的瞬时变化率。)(xfy )(xfy 0 xx 0 xx 1.导数的概念:第109页/共121页第一百零九页,共122页。导数的几何意义是函数 在点 处的切线的斜率(xil),且切线的方程为:)(xfy )(,(00 xfx)(000

52、xxxfyy导数的物理意义是以 为运动方程(fngchng)的物体在 时刻的瞬时速度。)(xf0 x特别(tbi): 是瞬时速度; 是瞬时加速度。)(tsV )(tVa 第110页/共121页第一百一十页,共122页。xxxxxxxxxbkkbkxCC21).(71)1.(63).(52).(41).(3),().(2)(0. 12232为常数为常数2.导数(do sh)的运算:(1)基本初等函数(hnsh)的导数公式:第111页/共121页第一百一十一页,共122页。xxxxxxeeaaaxexxaaaaaxxxxaaxxsin).(cos14cos).(sin131).(ln12).(11

53、) 1, 0(ln1log1).(log10) 1, 0(ln).(9)().(81且且为常数第112页/共121页第一百一十二页,共122页。(2)导数的四则运算(s z yn sun)法则:(3)简单复合(fh)函数的求导法则:)()()()()()()()()()()()()()()( )()( )()(2xgxgxfxgxfxgxfxgxfxgxfxgxfxCfxCfxgxfxgxf)(),(xguufy)()(xgufyx 求复合函数的导数,关键是分清(fn qng)复合的过程。第113页/共121页第一百一十三页,共122页。3.导数(do sh)的应用 1 函数的单调性与其导函数正负(zhn f)的关系:当函数 y=f (x) 在某个区间(q jin)内可导时,如果 , 则f (x)为增函数;如果 , 则f (x)为减函数。0)( xf0)( xf第114页/共121页第一百一十四页,共122页。2 函数(hnsh)的极大值、极小值设函数 y=f (x) 在 点连续(linx)若在 附近的左侧 ,右侧 ,那么 是极大

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论