




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、全等三角形一、目标认知学习目标:1了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2探索三角形全等的条件,能利用三角形全等进行证明,掌握综合法证明的格式。重点:1. 使学生理解证明的基本过程,掌握用综合法证明的格式;2 . 三角形全等的性质和条件。难点:1. 掌握用综合法证明的格式;2 . 选用合适的条件证明两个三角形全等。二、知识要点梳理知识点一:全等形要点诠释:能够完全重合的两个图形叫全等形。知识点二:全等三角形要点诠释:能够完全重合的两个三角形叫全等三角形。知识点三:对应顶点,对应边,对应角要点诠释:两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合
2、的角叫对应角。知识点四:全等三角形的性质要点诠释:全等三角形对应边相等,对应角相等。知识点五:三角形全等的判定定理(一)要点诠释:三边对应相等的两个三角形全等。简写成“边边边”或“sss ”知识点六:三角形全等的判定定理(二)要点诠释:两边和它们的夹角对应相等的两个三角形全等。简写成“边角边”或“sas ”知识点七:三角形全等的判定定理(三)要点诠释:两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“asa ”知识点八:三角形全等的判定定理(四)要点诠释:两个角和其中一个角的对边对应相等的两个三角形全等。简写成“角角边”或“aas ”知识点九:直角三角形全等的判定定理要点诠释:斜边
3、和一条直角边对应相等的两个直角三角形全等。简写成“斜边、直角边”或“hl”三、规律方法指导1. 探索三角形全等的条件:(1)一般三角形全等的判别方法有四种方法:边角边(sas );角边角 (asa); 角角边(aas); 边边边 (sss). (2) 直角三角形的全等的条件: 除了使用sas 、asa 、 aas 、sss判别方法外,还有一种重要的判别方法,也就是斜边、直角边(hl)判别方法 . 2判别两个三角形全等指导(1)已知两边(2)已知一边一角(3)已知两角3经验与提示:寻找全等三角形对应边、对应角的规律: 全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边 全等三角形对应边
4、所对的角是对应角,两个对应边所夹的角是对应角 有公共边的,公共边一定是对应边 有公共角的,公共角一定是对应角 有对顶角的, 对顶角是对应角 全等三角形中的最大边( 角) 是对应边 ( 角) , 最小边 ( 角)是对应边 ( 角) 找全等三角形的方法可以从结论出发, 看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;可以从已知条件出发,看已知条件可以确定哪两个三角形相等;从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;若上述方法均不行,可考虑添加辅助线,构造全等三角形。证明线段相等的方法:中点定义;等式的性质;全等三角形的对应边相等;借助中间线段(即要证a=b, 只需证 a=
5、c,c=b 即可)。随着知识深化,今后还有其它方法。证明角相等的方法:对顶角相等;同角(或等角)的余角(或补角)相等;两直线平行,同位角、内错角相等;等式的性质;垂直的定义;全等三角形的对应角相等;三角形的外角等于与它不相邻的两内角和。随着知识的深化,今后还有其它的方法。证垂直的常用方法证明两直线的夹角等于90;证明邻补角相等;若三角形的两锐角互余,则第三个角是直角;垂直于两条平行线中的一条直线,也必须垂直另一条。证明此角所在的三角形与已知直角三角形全等;邻补角的平分线互相垂直。全等三角形中几个重要结论全等三角形对应角的平分线相等;全等三角形对应边上的中线相等;全等三角形对应边上的高相等。4.
6、 知识的应用(1)全等三角形的性质的应用:根据三角形全等找对应边,对应角,进而计算线段的长度或角的度数. (2)全等三角形判别方法的应用:根据判别方法说明两个三角形全等,进一步根据性质说明线段相等或角相等. (3)用全等三角形测量距离的步骤:(1)先明确要解决什么实际问题;(2)选用全等三角形的判别方法构造全等三角形;(3)说明理由 . 5注意点(1)书写全等三角形时一般把对应顶点的字母放在对应的位置. (2)三角形全等的判别方法中不存在“ass ”、“ aaa ”的形式,判别三角形全等的条件中至少有一条边. (3)寻找三角形全等的条件时,要结合图形,挖掘图中的隐含条件:如公共边、公共角、对顶
7、角、中点、角平分线、高线等所带来的相等关系. (4)运用三角形全等测距离时,应注意分析已知条件,探索三角形全等的条件,理清要测定的距离,画出符合的图形,根据三角形全等说明测量理由. (5)注意只有说明两个直角三角形全等时,才使用“hl”,说明一般的三角形全等不能使用“ hl”. 6. 数学思想方法(1)转化思想:如将实际问题转化数学问题解决等. (2)方程思想: 如通过设未知数,根据三角形内角和之间的关系构造方程解决角度问题. (3)类比思想:如说明两个三角形全等时,根据已知条件选择三角形全等. 必听课程:栏目视听课堂名称:全等三角形(一)1 课件 id 号( 141001) 主讲教师:梁威栏
8、目视听课堂名称:全等三角形(一)2 课件 id 号( 141009)主讲教师:梁威经典例题透析1、如图,abdace,ab=ac,写出图中的对应边和对应角. 思路点拨 : ab=ac,ab和ac是对应边,a是公共角,a和a是对应角,按对应边所对的角是对应角,对应角所对的边是对应边可求解. 解析:ab和ac是对应边,ad和ae、bd和ce是对应边, a和a是对应角, b和c,aec和adb是对应角 . 总结升华: 已知两对对应顶点,那么以这两对对应顶点为顶点的角是对应角,第三对角是对应角;再由对应角所对的边是对应边,可找到对应边. 已知两对对应边,第三对边是对应边,对应边所对的角是对应角. 2、
9、如图,已知 abc def , a=30, b=50, bf=2,求 dfe的度数与ec的长。思路点拨 :由全等三角形性质可知:dfe= acb ,ec+cf=bf+fc,所以只需求 acb的度数与bf的长即可。3、如图, ac bd ,df ce , ecb fda ,求证: adf bce 思路点拨 :欲证 adf bce ,由已知可知已具备一边一角,由公理的条件判断还缺少这角的另一边, 可通过 ac bd而得总结升华: 利用全等三角形证明线段( 角 ) 相等的一般方法和步骤如下:(1) 找到以待证角( 线段 ) 为内角 ( 边) 的两个三角形,(2) 证明这两个三角形全等;(3) 由全等
10、三角形的性质得出所要证的角( 线段 ) 相等4、如图, ad为abc的中线。求证:ab+ac2ad. 思路点拨 :要证 ab+ac2ad ,由图想到: ab+bdad,ac+cdad,所以 ab+ac+bc2ad,所以不能直接证出。由2ad想到构造一条线段等于 2ad ,即倍长中线。5、如图, abcd ,be df, b d,求证: (1)ae cf,(2)ae cf,(3) afe cef 思路点拨 : (1) 直接通过 abe cdf而得, (2) 先证明 aeb cfd , (3) 由(1)(2)可证明 aef cfe而得,总之,欲证两边( 角) 相等,找这两边( 角) 所在的两个三角
11、形然后证明它们全等6、如图 ab ac ,bd ac于 d,ce ab于 e, bd 、ce相交于 f求证: af平分 bac 思路点拨 :若能证得得ad=ae ,由于 adb 、aec都是直角,可证得 rtadf rt aef ,而要证ad=ae ,就应先考虑rt abd与 rtaec ,由题意已知ab=ac , bac是公共角,可证得rt abd rtace 7、abc中, ab=ac ,d是底边 bc上任意一点, de ab ,df ac ,cg ab垂足分别是e、f、g. 试判断:猜测线段 de、df、cg的数量有何关系?并证明你的猜想。思路点拨 : 寻求一题多解和多题一解是掌握规律的
12、捷径注:学生必做成果测评轴对称(一)课件 id 号( 212733)一、目标认知学习目标:通过具体实例认识轴对称,探索它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质; 能按要求作出简单平面图形经过一次或两次轴对称后的图形;探索简单图形之间的轴对称关系, 并能指出对称轴;欣赏生活中的轴对称图形,结合现实生活中的典型实例了解并欣赏物体的镜面对称。重点:1. 轴对称概念及有关性质;2. 基本图形(如线段、角)的轴对称性3. 画和轴对称有关的图形难点:轴对称的性质的探索和掌握。二、知识要点梳理知识点一:轴对称图形及对称轴要点诠释:如果一个图形沿着一条直线对折,对折的两部分能够完全重合,这样的
13、图形就是轴对称图形。这条直线叫这个图形的对称轴. 知识点二:轴对称及对称点要点诠释:把一个图形沿某条直线翻折过去, 如果它能够与另一个图形重合, 那么就说这两个图形成轴对称 , 这条直线就是对称轴, 两个图形中的对应点( 即两个图形重合时互相重合的点) 叫做对称点 . 知识点三:线段的垂直平分线要点诠释:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。知识点四:轴对称的性质要点诠释:1. 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。2. 轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。知识点五:线段垂直平分线的性质要点诠释:线段垂直平
14、分线上的点与这条线段两个端点的距离相等。知识点六:点在线段垂直平分线上的判定要点诠释:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。三、规律方法指导1 由一个平面图形得到它的轴对称图形叫做轴对称变换?成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到2轴对称变换的性质:(1)经过轴对称变换得到的图形与原图形的形状、大小完全一样(2) 经过轴对称变换得到的图形上的每一点都是原图形上的某一点关于对称轴的对称点(3)连接任意一对对应点的线段被对称轴垂直平分3作一个图形关于某条直线的轴对称图形的步骤:(1)作出一些关键点或特殊点的对称点(2)按原图形的连接方式连接所得到
15、的对称点,即得到原图形的轴对称图形4点 p(x, y)关于 x 轴对称的点的坐标是(x,-y );点 p(x, y)关于 y 轴对称的点的坐标是(-x , y);点 p(x, y)关于原点对称的点的坐标是(-x , -y )5点 p(x, y)关于直线x=m对称的点的坐标是(2m-x,y);点 p(x, y)关于直线y=n 对称的点的坐标是(x,2n-y );必听课程:栏目视听课堂名称:轴对称课件 id 号( 213958)主讲教师:梁威经典例题透析类型一:最短路程问题1、在锐角 aob内有一定点p,试在 oa 、ob上确定两点c、 d ,使 pcd的周长最短思路点拨 : pcd的周长等于pc
16、+cd+pd,要使 pcd的周长最短,?根据两点之间线段最短,只需使得pc+cd+pd 的大小等于某两点之间的距离,于是考虑作点p关于直线oa? 和 ob的对称点 e、f,则 pcd的周长等于线段ef的长举一反三:【变式 1】草原上两个居民点a 、b 在河流 a 的同旁,一汽车从 a出发到 b,途中需要到河边加水。汽车在哪一点加水,可使行驶的路程最短?在图上画出该点。思路点拨: 若 p为直线a 上的点,则要使pa+pb最小与线段有关的结论是两点之间线段最短,当把pa+pb转化成为一条线段时,点p就是符合条件的点类型二:坐标系中的对称问题2、如图,请写出abc中各顶点的坐标在同一坐标系中画出直线
17、m :x=?-1 ,并作出 abc关于直线m对称的 abc若 p(a,b)是 abc中 ac边上一点, ?请表示其在a b c中对应点的坐标思路点拨 :直线 m :x=-1 表示直线m上任意一点的横坐标都等于-1 ,因此过点( -1 , 0)?作 y 轴的平行线即直线m 画出直线m后,再作点a、c关于直线m的对称点a、 c, ?而点 b在直线 m上,则其关于直线m对称的点 b就是点b本身总结升华: 2( -1 )中的 -1 即对称轴x=-1 若对称轴不是x=-1 ,而是y=2,相信聪明的你是一定能作出对称的三角形的,也一定能发现其中坐标变化的规律举一反三:【变式 1】如图 6,一束光线从y 轴
18、点 a ( 0,2)出发,经过x 轴上点 c反射后经过点b(6,6),则光线从点a到点 b所经过的路程是()a. 10 b. 8 c. 6 d. 4 注:学生必做成果测评轴对称(二)课件 id 号( 213956)一、目标认知学习目标:通过观察发现等腰三角形的性质;掌握等腰三角形的识别方法,会用等腰三角形的性质进行简单的计算和证明;理解等腰三角形与等边三角形的相互关系;能够利用等腰三角形的识别方法判断等腰三角形;掌握等边三角形的特征和识别方法;掌握一般文字命题的解题方法。重点:等腰三角形的性质与判定。难点:比较复杂图形、题目的推理证明。二、知识要点梳理知识点一:等腰三角形、腰、底边要点诠释:有
19、两边相等的三角形是等腰三角形。相等的两条边叫等腰三角形的腰,第三条边叫等腰三角形的底边。知识点二:等腰三角形的性质要点诠释:(1)等腰三角形的两个底角相等。(简称“等边对等角”)(2)等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合。(简称“三线合一”)知识点三:等腰三角形的判定要点诠释:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(简称“等角对等边”)知识点四:等边三角形要点诠释:三条边均相等的三角形是等边三角形。知识点五:等边三角形的性质要点诠释:等边三角形的每个角都相等,并且每个角都等于60知识点六:等边三角形的判定要点诠释:(1)三个角都相等的三角形是等边三角形。(
20、2)有一个角等于60的等腰三角形是等边三角形。知识点七:直角三角形性质定理要点诠释:在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半。三、规律方法指导1. 等腰(边)三角形是一个特殊的三角形,具有较多的特殊性质,有时几何图形中不存在等腰(边)三角形,可根据已知条件和图形特征,适当添加辅助线,使之构成等腰(边)三角形,然后利用其定义和有关性质,快捷地证出结论。2. 常用的辅助线有:(1)作顶角的平分线、底边上的高线、中线。(2)在三角形的中线问题上,我们常将中线延长一倍,这样添辅助线有助于我们解决有关中线的问题。经典例题透析类型一:探究型题目1如图 1,在直角 abc中,
21、acb=90 , cab=30 ,请你设计三种不同的分法,把abc分割成两个三角形,且要求其中有一个是等腰三角形。(在等腰三角形的两个底角处标明度数)思路点拨 :对图形进行分割是近年来新出现的一类新题型,主要考查同学们对基础知识的掌握情况以及动手实践能力,下面提供四种分割方法供大家参考。举一反三:【变式 1】如图 3,d是 abc中 bc边上的一点, e是 ad上的一点, eb=ec , 1=2,求证:ad bc 。请你先阅读下面的证明过程。证明: 在 aeb和 aec中,所以 abe aec (第一步),所以 ab=ac , 3=4(第二步),所以 ad bc (等腰三角形的“三线合一”)。
22、上面的证明过程是否正确?如果正确,请写出每一步的推理依据;如果不正确, 请指出关键错在哪一步,写出你认为正确的证明过程。【变式 2】已知 abc为等边三角形,在图4 中,点 m是线段 bc上任意一点,点n是线段 ca上任意一点,且bm=cn ,直线 bn与 am相交于 q点。(1)请猜一猜:图4 中 bqm 等于多少度?(2)若 m 、n两点分别在线段bc 、ca的延长线上,其它条件下不变,如图5 所示, (1)中的结论是否仍然成立?如果成立,请加以证明;如果不成立,请说明理由类型二:与度数有关的计算2如图,在abc中, d在 bc上,且 ab=ac=bd, 1=30,求 2 的度数。思路点拨
23、 :解该题的关键是要找到2 和 1 之间的关系,显然2=1+c,只要再找出 c与 2 的关系问题就好解决了,而c=b,所以把问题转化为欲找出2 与 b之间有什么关系,变成 abd的角之间的关系, 问题就容易的多了。类型三:等腰三角形中的分类讨论3当腰长或底边长不能确定时,必须进行分类讨论(1)已知等腰三角形的两边长分别为8cm和 10cm ,求周长。(2)等腰三角形的两边长分别为3cm和 7cm,求周长。思路点拨 :由等腰三角形的性质可知我们在解此题前,必须明确所给的边的定义,在这里哪条边是 “腰” ,哪条边是 “底” 不明确, 而且还要考虑到三条线段能够构成三角形的前提,因此必须进行分类讨论
24、。类型四:证明题4已知:如图, abc ,acb的平分线交于f,过 f 作 de bc ,交 ab于 d,交 ac于 e。求证: bdec de 。思路点拨 : 因为 de dffe,即结论为bd ec dffe,分别证明bd df,cefe即可,于是运用“在同一三角形中,等角对等边”易证结论成立。举一反三:【变式 1】如图, c是线段 ab上的一点,acd和 bce是等边三角形,ae交 cd于 m ,bd交ce于 n ,交 ae于 o 。求证:( 1) aob 120;(2)cm cn ;(3)mn ab 。【变式 2】已知,在 abc中, acb 90, cd ,ce三等分 acb ,cd
25、 ab (如图所示)。求证:( 1)ab2bc ;( 2)ceae eb 。注:学生必做成果测评实 数课件 id 号( 215593)一、目标认知学习目标:1. 了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根和立方根. 2. 了解开方与乘方互逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根. 3. 了解实数的意义.知道实数与数轴上的点是一一对应的,了解无理数的概念. 4. 了解二次根式的概念及加、减、乘、除运算法则. 会进行实数的简单运算重点:无理数和实数的概念. 引入无理数使数域扩充到实数域,初中的所有数的运算均在实数范围内进行
26、的 . 无理数概念的理解决定实数概念的理解, 有利于实数分类和运算的掌握. 要让学生掌握关于有理数的运算律和运算性质在实数范围内仍成立, 这是中学数学的基础. 难点:无理数和实数的理解. 无理数和实数比较抽象, 尤其是无理数不能像有理数那样具体描述出某个数的特点, 在学生思维中想象不出它的存在, 借助实数和数轴上的点一一对应, 注意通过具体数加以解释. 实数抽象程度较高, 能够对实数意义有所了解就可以. 二、知识要点梳理知识点一:算术平方根与被开方数要点诠释:如果一个正数x 的平方等于a,即 x2=a, 那么这个正数x 叫做 a 的算术平方根(规定0 的算术平方根还是0); a 的算术平方根记
27、作,读作“ a的算术平方根”,a 叫做被开方数。知识点二:平方根要点诠释:如果一个数的平方等于a,那么这个数叫做a 的平方根或二次方根。知识点三:开平方要点诠释:求一个数a 的平方根的运算,叫做开平方。知识点四:立方根要点诠释:如果一个数的立方等于a,那么这个数叫做a 的立方根或三次方根知识点五:开立方要点诠释:求一个数立方根的运算,叫做开立方。知识点六:根指数要点诠释:一个数 a 的立方根,用符号“”表示,读作“三次根号a”,其中a 是被开方数, 3是根指数。知识点七:无理数要点诠释:我们知道,很多数的平方根和立方根都是无限不循环小数,无限不循环小数又叫做无理数。知识点八:实数要点诠释:有理
28、数和无理数统称实数三、规律方法指导1. 无理数:无限不循环小数叫做无理数. 初中遇到的无理数有三类:开方开不尽的,如:;特定结构的数,如:1.010010001 ;特定意义的数,如:、sin45 ( 以后才学到 ) ,它们的本质特征是无限不循环小数. (判断一个实数是有理数还是无理数,不能只看表面,往往要经过整理化简后才能下结论). 2. 实数:有理数和无理数统称为实数. 我们一般用下列两种情况将实数进行分类. 按属性分类:按符号分类3. 关于实数的运算法则:有理数的运算规律和运算性质,在进行实数运算时仍然成立. 在实数范围内,不仅可以进行加、减、乘、除、乘方运算,而且正数和零总可以进行开方运
29、算,负数只能开奇次方. 应当注意,负数不能开偶次方. 4. 实数和数轴上点的对应关系:实数与数轴上的点一一对应,即每一个实数都可以用数轴上的一个点表示. 反过来,数轴上的每一个点都可以表示一个实数. 我们可以用几何作图方法,在数轴上表示某些无理数,如等。必听课程:栏目视听课堂名称:实数1课件 id 号( 217903)主讲教师:梁威栏目视听课堂名称:实数2 课件 id 号( 217905)主讲教师:梁威经典例题透析类型一:定义的掌握1、下列各数,哪些是有理数,哪些是无理数?哪些是正实数 ? 0.313131 , 2, 81 ,23, , 3.14 , -0.4829 , 1.020020002
30、 ,3 0.5. 思路点拨 :判断一个数是有理数还是无理数,应从它们的定义去辨别,不能从形式上去分辨,如带根号的数不一定是无理数,像上面的就是有理数 . 举一反三:【变式 1】判断正误,在后面的括号里对的用“”,错的记“”表示,并说明理由. (1) 无理数都是开方开不尽的数.( ) (2) 无理数都是无限小数.( ) (3) 无限小数都是无理数.( ) (4) 无理数包括正无理数、零、负无理数.( ) (5) 不带根号的数都是有理数.( ) (6) 带根号的数都是无理数.( ) (7) 有理数都是有限小数.( ) (8) 实数包括有限小数和无限小数.( ) 类型二:数的开方运算2、的平方根是
31、_; 算术平方根是_ 思路点拨 :先化简再计算类型三:二次根式的运算、计算 : (1); (2);(3);思路点拨 :1. 二次根式化简两种类型,其一:根号内有平方因式,如; 其二:根号内有分母,如类型四:根式运算的应用4、全球气候变暖导致一些冰川融化并消失。在冰川消失12 年后,一种低等植物苔藓,就开始在岩石上生长。每一个苔藓都会长成近似的圆形。苔藓的直径和其生长年限近似地满足如下地关系式:d7(t 12)其中 d 表示苔藓的直径,单位是厘米,t 代表冰川消失的时间(单位:年). (1)计算冰川消失16 年时苔藓的直径;(2)如果测得一些苔藓的直径是35 厘米,问冰川约是在多少年前消失的?思
32、路点拨 :. 这是解方程的重要方法类型五:实数在数轴上表示5、实数 a、b、 c 在数轴上的对应点的位置如图所示,下列式子中正确的有( )b+c0a+ba+c bcacabac a一个b两个 c 三个 d 四个思路点拨 :考查实数的运算,在数轴上比较实数的大小举一反三:【变式 1】. 实数上的点a和点 b之间的整数点有_ 类型六:实数比较大小6、比较与的大小思路点拨 :1. 求差法的基本思路是设a,b 为任意两个实数,先求出a 与 b 的差,再根据当a-b 0 时,得到 ab. 当 a-b 0 时,得到a b。. 当 a-b 0, 得到 a=b;2. 求商法的基本思路是设a。b 为任意两个正实
33、数,先求出a 与 b 得商。1 时, ab,当1 时, a b. 当=1 时, a=b 来比较 a 与 b 的大小。举一反三:【变式 1】( 1)比较-与-的大小(2)比较与的大小注:学生必做成果测评变量与函数课件 id 号( 208823)一、目标认知重点:函数定义、解析式、自变量取值范围、函数的表示方法难点:运用函数定义辨析是否存在函数关系,分析具体材料背景写出函数解析式及自变量取值范围内容综述:1、函数的有关概念:一般地,设在某变化过程中有两个变量x,y。如果对于x 在某一范围内的每一个确定的值, y 都有唯一确定的值与它对应,那么就说y 是 x 的函数, x 叫做自变量 ,y 叫因变量
34、。如果当 xa 时, yb,那么 b 叫做当自变量的值为a 时的函数值。对于函数的意义,应从以下几个方面去理解:(1)我们是在某一变化过程中研究两个变量的函数关系,在不同研究过程中,变量与常量是可以相互转换的,即常量和变量是对某一过程来说的,是相对的。(2)对于变量x 允许取的每一个值,合在一起组成了x 的取值范围。(3)变量x 与 y有确定的对应关系,即对于x 允许取的每一个值,y 都有唯一确定的值与它对应。2. 函数值与函数值有关的问题可以转化为求代数式的值。课程学习目标及学习建议:1. 函数是刻画现实世界中变化规律的非常重要数学模型,对函数概念体会的深入程度是学好函数知识的关键,在学习过
35、程中一定要紧紧地结合实例体会引入函数概念的意义,紧紧地结合实例体会了解常量、变量,理解函数的概念,体会“变化与对应”的思想,了解函数的三种表示方法 ( 列表法、解析式法和图象法) 。认真不浮躁地落实基本知识和基本技能。2. 数学建模思想的体会理解,从分析探索实际问题中的数量关系和变化规律出发,经历体会“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的每个过程细节,提高运用所学知识分析解决问题的意识。二、重点内容分析:1. 变量、常量、函数概念的体会( 一) 实例分析:(1) 汽车以 60 千米 / 时的速度匀速行驶,行驶里程为s千米, 行驶时间为t 小时, 如下表:t (小时
36、)1 2 3 4 5 s(千米)60 120 180 240 300 思考:在上述变化过程中,有两个变量s、t ,一个常量速度60 千米 / 时,两个变量之间是否有这样的关系“当其中一个变量取定一个值时,另一个变量就有唯一确定的值与之相对应?”(2) 每张电影票售价为10 元,早场售出 150 张,日场售出205 场,晚场售出310 场,三场电影的票房如下表时段早场日场晚场售出票数 ( 张) 150 205 310 收入金额 ( 元) 1500 2050 3100 思考:在上述变化过程中,有两个变量售出票数和收入金额,一个常量单价10,两个变量之间是否有这样的关系:“当其中一个变量取定一个值时
37、,另一个变量就有唯一确定的值与之相对应 ?”(3) 在一根弹簧下端悬挂重物,弹簧原长10cm ,若每 1kg 重物使得弹簧伸长0.5cm,不同的重量 m对应的弹簧长度l 如下表:重量 (kg) 1 2 5 8 10 弹簧长度 (cm) 10.5 11 12.5 14 15 思考: 在上述变化过程中,有两个变量重量和弹簧长度,一个常量弹簧原长、单位重量伸长的数值, 两个变量之间是否有这样的关系:“当其中一个变量取定一个值时,另一个变量就有唯一确定的值与之相对应?”(4) 要画一个面积为s的圆,圆的半径r 应取多少 ?请完成下表:圆的面积 (s) 10 20 50 100 300 圆的半径 (r)
38、 1.784 思考:在上述变化过程中,有两个变量s、 r,一个常量圆周率,两个变量之间是否有这样的关系:“当其中一个变量取定一个值时,另一个变量就有唯一确定的值与之相对应?”(5) 用 10m长的绳子围成长方形,根据长方形长的长度,观察长方形的宽的长度和面积如何变化。请思考完成下表:长方形的长 /m 2.5 3 3.5 4 4.5 2 1.5 1 0.5 长方形的宽 /m 2.5 长方形的面积/m26.25 思考:在上述变化过程中,有三个变量长方形的长、宽、面积,一个常量长方形的周长10,其中每两个变量之间是否都有这样的关系:“当其中一个变量取定一个值时,另一个变量就有唯一确定的值与之相对应?
39、”( 二) 规律概括在我们身边的各种变化中,有各种变化的量和不变化的量,在两个变量之间有一种不是一定存在但是是非常普遍存在的关系就是:“当其中一个变量随便取定一个值时,另一个变量都有唯一确定的值与之相对应! ”也就是说普遍的两个变量之间都存在相依对应的关系! 函数定义:一般地,在一个变化过程中. 如果有两个变量. x 与 y,并且对于x 的每一个确定的值,y都有唯一确定的值与其对应?那么我们就说. x是自变量, y 是 x 的函数,如果当x=a 时 y=b,那么 b 叫做当自变量的值为a 时的函数值。注: (1) 函数是两个变量之间一种相依对应的关系(2) 自变量在其可以取值的范围内任意取,函
40、数值每次在自变量取定一个值后都存在唯一确定的值与之相对应。2. 定义运用1. 判断下列材料中所给的两个变量之间是否存在函数关系? (1) 心电图中的变量:心脏脉冲电流值和时间(2) 下表中所示变量:人口数和年份之间2. 用长为10cm 的绳子围成一个长方形,其中长方形的一条边长是xcm,这个长方形的面积s cm2,判断填空:这里_是常量, _是变量,变量间是否存在函数关系?若存在,其中 _是_的函数,你是否能说明理由?是否能选择适当的方法表达该函数关系? 注: (1) 当用解析式表达函数关系时,一定要关注自变量的取值范围! (2) 确定自变量取值范围时,不仅要考虑函数解析式有意义,而且还要注意
41、问题的实际意义 ! (3) 约定,在我们今后所给定的函数解析式中,若没有特别说明,都默认自变量取值范围为使解析式有意义的所有实数! 3. 判断下列关系式和图象中,其中y 是否是 x 的函数 ? (1)(2)(3)(4) (5) 4. 写出下列函数关系式:(1) 等腰三角形的底角y 的度数与顶角度数x 之间的关系为 _;(2) 某礼堂共有25 排座位,第一排有20 个座位,后面每排比前一排多1 个座位,则每排座位数 y 与这排的排数x 的关系为 _整式的乘法课件 id 号( 220583)目标认知学习目标:1掌握正整数幂的运算性质(同底数幂的乘法、幂的乘方、积的乘方),能用字母式子和文字语言正确
42、地表述这些性质,并能运用它们熟练地进行运算。2掌握单项式与单项式,单项式与多项式,多项式与多项式相乘的法则,并能运用它们进行运算。重点:整式乘法性质的准确掌握和熟练运用。难点:字母的广泛含义的理解。二、知识要点梳理知识点一:同底数幂的乘法要点诠释:同底数幂相乘,. 底数不变,指数相加用字母表示为:aman=am+n(m 、n 都是正整数) . 三个或三个以上同底数幂相乘时,也具有这一性质,即amanap=am+n+p(m 、n、p 都是正整数) . 此性质可以逆用,即am+n=aman( m 、n 都是正整数) . 知识点二:幂的乘方要点诠释:幂的乘方,底数不变,指数相乘。用字母表示为:(am
43、)n=amn. (m 、n 都是正整数 ) 知识点三:积的乘方要点诠释:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。用字母表示为:(ab)n=anbn(n 是正整数 ). 知识点四:单项式乘以单项式要点诠释:单项式与单项式相乘,把它们的系数、相同字母分别相乘.对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. 知识点五:单项式乘以多项式要点诠释:单项式与多项式相乘,就是用单项式乘以多项式的每一项,再把所得的积相加,用字母表示为m(a+b+c)=ma+mb+mc. 知识点六:多项式乘以多项式要点诠释:多项式乘以多项式,先用一个多项式的每一项分别乘以另一个多项式的每一项
44、,再把所得的积相加 . 用字母表示为(a+b)( m+n )=ma+na+mb+nb. 三、规律方法指导1在学习本节内容时,应适当复习幂、指数、底数等概念,特别要弄清正整数指数幂的意义. 2幂的三个运算性质是学习整式乘法的前提条件,单项式乘法是幂的运算性质的一个直接应用,单项式与多项式乘法及多项式与多项式乘法是在单项式乘法的基础上,利用分配律的更复杂的运算 . 3在单项式的乘法法则中:系数相乘,是有理数的乘法运算;相同字母相乘,是同底数幂的乘法运算;单项式与单项式相乘的结果是单项式,一般确定结果的系数,往往先确定绝对值,再确定符号 . 4在单项式与多项式相乘时:单项式乘以多项式的依据是乘法对加
45、法的分配律. 单项式与多项式相乘,结果是一个多项式,其项数和因式中多项式的项数相同,计算时要注意各项的符号. 5在多项式与多项式相乘时:多项式乘以多项式可以化为单项式乘以多项式或单项式乘以单项式. 多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应该等于两个多项式的项数的积 . 必听课程:栏目视听课堂名称:整式的乘法课件 id 号( 12322)主讲教师:凌文伟经典例题透析类型一:同底数幂的运算1、计算: (1)(-)(-)2(-)3 (2) -a4(-a)3(-a)5思路点拨: ( 1)分析: (-) 就是 (-)1,指数为 1; 底数为 -,不变;指数相加1+2+3=6;乘方时先
46、定符号“+”,再计算的 6 次幂( 2)分析: -a4与(-a)3不是同底数幂;可利用 -(-a)4=-a4变为同底数幂总结升华:同底数幂的乘法法则是本章中的第一个幂的运算法则,也是整式乘法的主要依据之一。学习这个法则时应注意以下几个问题:(1)先弄清楚底数、指数、幂这三个基本概念的涵义。(2)它的前提是“同底”,而且底可以是一个具体的数或字母,也可以是一个单项式或多项式,如:(2x+y)2(2x+y)3=(2x+y)5,底数就是一个二项式(2x+y) 。(3)指数都是正整数(4) 这个法则可以推广到三个或三个以上的同底数幂相乘,即am anap.=am+n+p+. (m, n, p都是自然数
47、 )。(5)不要与整式加法相混淆。乘法是只要求底数相同则可用法则计算,即底数不变指数相加,如: x5x4=x5+4=x9;而加法法则要求两个相同: 底数相同且指数也必须相同,实际上是幂相同系数相加,如-2x5+x5=(-2+1)x5=-x5,而 x5+x4就不能合并。举一反三:【变式 1】计算 (x-y)3(y-x)(y-x)6【变式 2】计算:x5xn-3x4-3x2xnx4类型二:幂的乘方运算2、计算:( 1)(a2m)n(2)(am+n)m(3)(-x2yz3)3(4)-(ab)8思路点拨:( 1):先确定是幂的乘方运算用法则底数 a 不变 , 指数 2m和 n 相乘( 2):底数a 不
48、变,指数 (m+n)与 m相乘运用乘法分配律进行指数运算。( 3):底数有四个因式:(-1), x2, y, z3,分别 3 次方,注意(-1)3=-1。( 4): 8次幂的底数是ab。“ - ”在括号的外边先计算(ab)8再在结果前面加上“ -”号。总结升华:幂的乘方(am)n=amn,与积的乘方(ab)n=anbn(1) 幂的乘方,(am)n=amn,(m, n都为正整数 ) 运用法则时注意以下以几点:幂的底数a 可以是具体的数也可以是多项式。如(x+y)23的底数为 (x+y) ,是一个多项式,(x+y)23=(x+y)6要和同底数幂的乘法法则相区别,不要出现下面的错误。如:(a3)4=
49、a7; (-a)34=(-a)7; a3a4=a12 (2)积的乘方(ab)n=anbn,( n 为正整数)运用法则时注意以下几点:注意与前二个法则的区别:积的乘方等于将积的每个因式分别乘方(即转化成若干个幂的乘方),再把所得的幂相乘。积的乘方可推广到3 个以上因式的积的乘方,如:(-3a2b)3如(a1a2 an)m=a1ma2m anm 举一反三:【变式 1】当 ab=,m=5, n=3, 求(ambm)n的值。【变式 2】若 a3b2=15,求 -5a6b4的值。类型三:单项式的乘法3、计算:(1)(-3a2b)(-a2c2) 4c3(2) -3(a-b)22(a-b)3(a-b) 思路
50、点拨: (1) 不要将b 的这个因式丢掉.(2) 分析:将 (a-b) 看作底数,仍用单项式乘法法则来作。总结升华: 利用乘法交换律和乘法结合律再用同底数幂的乘法法则可完成单项式乘法。对于法则不要死记硬背,但要注意以下几点:积的系数等于各单项式的系数的积,应先确定符号后计算绝对值相同字母因数相乘,是同底数幂的乘法。要注意只在一个单项式里含有的字母要连同它的指数写在积里,不能将这个因式丢掉。单项式乘以单项式的结果仍是一个单项式。字母因式的底也可以是一个多项式,如:-2a(x+y)24ab2(x+y)3=-8a2b2(x+y)5 单 项 式 乘 法 法 则 对 于 三 个 以 上 的 单 项 式
51、相 乘 也 适 用 。 例 如 :ab2(-2a2b)(-4abc)=a4b4c 举一反三:【变式 1】计算(-3 106) (-2 104) (-5 105) 【变式 2】计算(1)(32)10+(92)5 (2) (23)63+(83)23 类型四:多项式的乘法4、计算:(1)4ab(3a2+2ab1) (2)2x(x2xyy2) 3xy(4x2y)+2y(7x24xy+y2) (3)(3x43x2+1)(x4 +x22) (4)(3x+1)(x+1)(2x1)(x1) 3x(x2) 2x( 3x) 总结升华:(1) 单项式乘以多项式,必须按照其法则进行。对于混合运算,运算顺序仍然是先乘方
52、,再乘除,后加减,运算结果要检查,如果有同类项要合并,结果要最简。(2) 多项式乘以多项式的运算法则,要按照运算法则一步一步来运算,并要做到不“重”和不“漏”,别出现符号错误,计算结果要最简,便可为解决此类问题扫清障碍。举一反三:【变式 1】已知:x2+x1=0,求x32x+4的值。注:学生必做成果测评整式除法课件 id 号( 223566)一、目标认知学习目标:1. 同底数幂的除法的运算法则及其应用。2. 单项式除以单项式的运算法则及其应用。3. 多项式除以单项式的运算法则及其应用。重点:准确熟练地运用同底数幂的除法运算法则进行计算难点:熟练运用所学法则进行整式的除法。二、知识要点梳理知识点
53、一:同底数幂的除法要点诠释: 同底数幂除法法则“同底数幂相除,底数不变,指数相减”公式(规定: a0=1(a0)任何不等于0 的数的 0 次幂都等于1)知识点二:单项式除以单项式要点诠释: 单项式相除,把系数、?同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式知识点三:多项式除以单项式要点诠释: 先把这个多项式的每一项分别除以这个单项式,?再把所得的商相加三、规律方法指导1、同底数幂的除法(1)、同底数幂除法法则“同底数幂相除,底数不变,指数相减”而不是“指数相除”(2)、公式中的底数,可以是数、字母、单项式等任意代数式。(3)、应用同底数幂相除时要
54、与同底数幂乘法和整式加减区别开。(4)、注意指数为1 时可以省略不写。2、应用单项式除以单项式时应注意的问题。(1)、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数包括它前面的符号;(2)、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏。(3)、要注意运算顺序,有乘方先算乘方,有括号先算括号里的,同级运算按从左到右的顺序进行。3、多项式除以单项式(1)思路:多项式除以单项式单项式除以单项式同底数幂相除和系数相除(“”表示转化)(2)注意: 多项式除以单项式时,?所得结果在合并同类项之前的项数与多项式的项数相同必听课程:栏目视听课堂名称:整式的除法课件 id 号( 12
55、334)主讲教师:凌文伟经典例题透析类型一:计算1、下列运算是否正确?对错题指出原因,并加以改正。总结升华:同底数幂的除法运算常见的错误是:(1)指数运算混乱;(2)底数确定的不对,出现符号错误;(3)系数计算不准;(4)运算顺序不对举一反三: 【变式 1】例 2 若2m=6,4n=2,求 22m-2n+2的值 . 【答案】分析:逆用同底数幂乘、 除法性质进行计算. 注意amn=(am)n=(an)m, am-n=aman.类型二:单项式除以单项式2、计算(1)(a2n+2b3c) (2anb2) (2)(x-y)5(y-x)3 (3)(x3y2)3(xy)2 (4)(3xy2)2(2xy)
56、(6x3y3)思路点拨: ( 1)中被除式的系数是1,可按照单项式相除法则计算;(2)将底数多项式看作整体,先将底数调整为相同的,进行同底数幂的除法(同底数幂的除法可看作单项式相除中最简单的形式),并将结果化到最后;对于混合运算,先弄清运算顺序,再根据相应的法则进行计算.(1) 先进行乘方,再进行除法运算. (2) 先乘方,再自左至右进行乘除法. 总结升华:从单项式除法的法则看出,单项式除法的实质是将它转化为同底数幂的除法运算,运算的结果仍是单项式运用单项式除法的法则进行计算的一般步骤:(1)把系数相除,所得结果作为商的系数;(2)把同底数幂分别相除,所得的结果作为商的因式;(3)把只在被除式
57、里出现的字母,连同它的指数作为商的一个因式单项式除以单项式运算常出现常见错误是:(1)忽略符号;(2)遗漏只在一个单项式里出现的字母举一反三:【变式 1】已知(-xyz)2m= x2n+1yn+3z45x2n-1yn+1z,求 m. 类型三:多项式除以单项式3、计算: (xy2)2+3xy3xy-2y2(xy)2 xy3y (x+y)3-2 (x+y)2+6(x+y) (x+y)思路点拨: 分析:第题应注意运算顺序,同级运算要按从左到右的顺序依次进行第题应视 x+y 为一个整体而看着是多项式除以单项式总结升华: 多项式除以单项式的实质是把多项式除以单项式的运算转化为单项式的除法运算多项式除以单
58、项式一般按下面两步进行:(1)用多项式的每一项除以单项式;(2)把每一项除得的商相加多项式除以单项式时,应注意逐项运算,要留心各项的符号多项式除以单项式常见的错误是:(1)忽视符号问题;(2)系数和指数运算不准举一反三:【变式 1】已知多项式2a3-4a2-a 除以一个多项式a,得到商式为2a,余式为a2-a ,求这个多项式 . 注:学生必做成果测评乘法公式课件 id 号( 221904)一、目标认知学习目标:1、通过运算多项式乘法,探索得到平方差公式、完全平方公式,培养认识由一般法则到特殊法则的能力。2、通过动手、观察并发现平方差公式、完全平方公式的结构特征,并能从广义上理解公式中字母的含义
59、。3、初步学会运用平方差公式、完全平方公式进行计算。重点:重点是理解平方差公式、完全平方公式,运用公式进行计算。难点:难点是对公式中a,b 的广泛含义的理解及正确运用。二、知识要点梳理知识点一:平方差公式要点诠释:(a+b)(ab)=a2-b2. 这就是说,两个数的和与这两个数的差的积等于这两个数的平方差知识点二:完全平方公式要点诠释:(a+b)2=a2+2ab+b2这就是说, 两数和的平方, 等于这两个数平方的和再加上这两个数乘积的二倍。(ab)2= a2-2ab+b2这就是说,两数差的平方,等于这两个数平方的和再减去这两个数乘积的二倍。必听课程:栏目视听课堂名称:乘法公式课件 id 号(
60、13959)主讲教师:凌文伟规律方法指导1. 分清 a、b,对号入座1计算(-2x2-5)(2x2-5)分析: 本题两个因式中 “-5” 相同, “2x2” 符号相反,因而 “-5 ” 是公式(a+b)(a-b)=a2-b2中的 a,而“2x2”则是公式中的b2计算(-a2+4b)2分析:运用公式(a+b)2=a2+2ab+b2时,“-a2”就是公式中的a,“4b”就是公式中的b;若将题目变形为(4b-a2)2时,则“4b”是公式中的a,而“a2”就是公式中的b (解略)2. 注意创造条件使用公式3计算 (2x+y-z+5)(2x-y+z+5)分析:粗看不能运用公式计算,但注意观察,两个因式中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- C语言最佳实践试题及答案
- 2025年JAVA考试关注的前沿技术试题及答案
- 计算机四级考试常见问题解答试题及答案
- C语言学习的常见误区与解决办法试题及答案
- 优化软件质量的测试策略发展试题及答案
- 高效备考2025年Msoffice试题及答案汇编
- C语言结构体相关试题及答案
- 医疗产品供货合同协议书
- 计算机科学中的图论应用试题及答案
- 工程拆除合同协议书怎么写
- 交通安全培训课件-道路交通事故十大典型案例-P
- 医院日间手术实施方案(试行)
- DB4211T12-2022医疗废物暂存间卫生管理规范
- 第二讲公文语言及结构(1语言)分析课件
- 氯氧铋光催化剂的晶体结构
- 低压电气装置的设计安装和检验第三版
- 国际商务管理超星尔雅满分答案
- 监理人员考勤表
- 克丽缇娜直销奖金制度
- 基本医疗保险参保人员丢失医疗费用票据补支申请
- DB11-T 825-2021绿色建筑评价标准
评论
0/150
提交评论