版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、15.2.2 分式的加减第十五章 分 式导入新课讲授新课当堂练习课堂小结 第第1课时课时 分式的加减分式的加减 八年级数学上(RJ) 教学课件学习目标1.掌握分式的加减运算法则并运用其进行计算.(重点)2.能够进行异分母的分式加减法运算(难点)导入新课导入新课情境引入情境引入32v123vv213vv123vv上坡时间:下坡时间:1( )hv2( )3hv帮帮小明算算时间帮帮小明算算时间讲授新课讲授新课同分母分式的加减一类比探究观察下列分数加减运算的式子,121235555121215555 12?aa12a12?22xx122x2?11axx21ax知识要点同分母分式的加减法则同分母分式相加
2、减,分母不变,把分子相加减上述法则可用式子表示为.ababccc xcxyxm)1( ycyaym)2( cabdbcanabcm222)3( yxbyxa)4(xcym ycam abcdnm2 yxba 牛刀小试2222532(1)xyxxyxy;解:原式=22(53 ) 2xyxxy= 注意:结果要化为最简分式!=2233xyxy3()()()xyxy xy3xy;例1 计算: 典例精析22222253358(2).a ba ba bababab解:原式=2222)8 () 53 () 35 (abbababa=222285335abbababa=22abba 注意:结果要化为最简分式!
3、=ba把分子看作一个整体,先用括号括起来!2222xxxx?242)1(2 xxx?131112)2( xxxxxx242xx 2131xxxx注意:当分子是多项式时要加括号! 注意:结果要化为最简形式!2131xxxx 1xx做一做异分母分式的加减二问题: 请计算 ( ), ( ). 31213121312162365656162633121626362361异分母分数相加减分数的通分依据:分数的基本性质转化同分母分数相加减异分母分数相加减,先通分,变为同分母的分数,再加减 . 请计算 ( ), ( ); 3121312131216236562633121依据:分数基本性质分数的通分同分母分
4、数相加减异分母分数相加减转化转化异分母分数相加减,先通分,变为同分母的分数,再加减.626362361db11bdbbddbdbd db11bdbbddbdbd 异分母分式相加减分式的通分依据:分式基本性质转化转化同分母分式相加减异分母分式相加减,先通分,变为同分母的分式,再加减.请思考 6561b d b d bdbd bdbd 知识要点异分母分式的加减法则异分母分式相加减,先通分,变同分母的分式,再加减.上述法则可用式子表示为.acadbcadbcbdbdbdbd2111xxx(1);解:原式=2111xxx=注意:(1-x)=-(x-1)2 (1)1xx31xx;例2 计算:分母不同,先
5、化为同分母.112323pqpq(2);解:原式=2323(23 )(23 ) (23 )(23 )pqpqpqpqpqpq(23 ) (23 )(23 )(23 )pqpqpqpq4(23 )(23 )ppqpq22449ppq;先找出最简公分母,再正确通分,转化为同分母的分式相加减.2221244xxxxxx(3);解:原式=221(2)(2)xxx xx=注意:分母是多项式先分解因式22(2)(2)(1)(2)(2)xxx xx xx x2224(2)xxxx x 先找出最简公分母,再正确通分,转化为同分母的分式相加减.=24(2)xx x;知识要点分式的加减法的思路 通分 转化为异分母
6、相加减同分母相加减 分子(整式)相加减分母不变 转化为例3.计算:211aaa法一:原式=2(1)(1)11aaaaa22(1)1aaa2211aaa11a法二:原式=2(1)1aaa2(1)1111aa aaaaa22()(1)1aaaaa2211aaaaa11a2(1)(1)1aa aaa把整式看成分母为“1”的分式阅读下面题目的计算过程. = = = (1)上述计算过程,从哪一步开始错误,请写出该步的代号_; (2)错误原因_;(3)本题的正确结果为: . 221323111111xxxxxxxxx3 21xx 3 22xx 1x漏掉了分母做一做例4 计算:22193mmm233333m
7、mmmmm2333mmmm()解:原式从1、-3、3中任选一个你喜欢的m值代入求值当m=1时,原式333mmm1m -311-312 先化简,再求值: ,其中 21211xx2x 解:2121112(1)(1)(1)(1)1(1)(1)11xxxxxxxxxxx12=12 1x 当时,原式做一做例5 已知下面一列等式:(1)请你从左边这些等式的结构特征写出它的一般性等式;(2)验证一下你写出的等式是否成立;(3)利用等式计算:解析:(1)观察已知的四个等式,发现等式的左边是两个分数之积,这两个分数的分子都是1,后面一个分数的分母比前面一个分数的分母大1,并且第一个分数的分母与等式的序号相等,等式的右边是这两个分数之差,据此可写出一般性等式;(2)根据分式的运算法则即可验证;(3)根据(1)中的结论求解A. B C1 D2当堂练习当堂练习111aaa11aa1aa1. 计算的结果为( )C2.填空: 35(1);xyxy44(2);xyxyyx8xy43.计算: 2121; 2.3211baabaa解:(1)原式=(2)原式=22222323;666babaababab21211aa12111aaa121111aaaaa233.111aaaaa4.先化简,再求值: ,其中x2016.课堂小结课堂小结分式加减运算加减法运算注意(1)减式的分式是多项式时,在进行运算时要适时添
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 创意设计思路与方法在教育领域的应用探讨
- 以AI技术为基础提高数字办公的工作效率和品质分析报告
- 办公室与教学结合学校实验空间布局新思路
- 企业中家庭式团队建设的成功案例分析
- 从健康角度出发的农村儿童游乐设施设计研究
- 生物教育的实习总结课件
- 企业制度汇编选集【人力资源管理篇】
- 2025海运运输的合同范本
- 创新教育的关键跨学科思维的培养与实践
- 企业制度收录合集【职员管理篇】
- 中国电信-员工手册(共20页)
- 切割钢丝,帘线湿拉
- 宜都市产业集群基本情况及产业链
- SF_T 0119-2021 声像资料鉴定通用规范_(高清版)
- 汽车机械识图图期末考试卷
- 五年级科学下册 给冷水加热课件1 教科版
- 幂的运算综合专项练习50题(共7页)
- 内脏疾病康复 向云
- 农村留守妇女创业就业情况调研报告
- 大型电力变压器安装监理工作要点
- 第三次全国文物普查建档备案工作规范
评论
0/150
提交评论