中考数学总复习 专题一 图表信息课件 新人教版 (214)(1)_第1页
中考数学总复习 专题一 图表信息课件 新人教版 (214)(1)_第2页
中考数学总复习 专题一 图表信息课件 新人教版 (214)(1)_第3页
中考数学总复习 专题一 图表信息课件 新人教版 (214)(1)_第4页
中考数学总复习 专题一 图表信息课件 新人教版 (214)(1)_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、二、转化与化归思想二、转化与化归思想转化与化归思想在高考中占有十分重要的地位,数学问题的解决,离不开转化与化归,如未知向已知的转化、新知识向旧知识的转化、复杂问题向简单问题的转化、不同数学问题之间的互相转化、实际问题向数学问题的转化等.1.转化与化归思想的含义转化与化归的思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而得到解决的一种思想方法.2.转化与化归的原则(1)熟悉化原则;(2)简单化原则;(3)直观化原则;(4)正难则反原则;(5)等价性原则.3.常见的转化与化归的方法(1)直接转化法;(2)换元法;(3)数形结合法;(4)构造法;(5)坐标法;(6)

2、类比法;(7)特殊化方法;(8)等价问题法;(9)补集法.应用一应用二应用三应用四应用一应用一特殊与一般的转化特殊与一般的转化 应用一应用二应用三应用四思维升华1.当问题难以入手时,应先对特殊情形进行观察、分析,发现问题中特殊的数量或关系,再推广到一般情形,以完成从特殊情形的研究到一般问题的解答的过渡,这就是特殊化的化归策略.2.数学题目有的具有一般性,有的具有特殊性,解题时,有时需要把一般问题化归为特殊问题,有时需要把特殊问题化归为一般问题.应用一应用二应用三应用四突破训练突破训练1在定圆C:x2+y2=4内过点P(-1,1)作两条互相垂直的直线与C分别交于A,B和M,N,则 的取值范围是

3、.应用一应用二应用三应用四应用二应用二命题的等价转化命题的等价转化 例2若函数f(x)=(1-x2)(x2+ax+b)的图象关于直线x=-2对称,则f(x)的最大值为16.转化一 若只根据f(x)图象关于直线x=-2对称,得零点对称,条件转化为f(-1)=f(-3)=f(1)=f(-5),解得a=8,b=15,其余由求导完成,恐有因式分解的障碍.转化二 由于函数y=f(x)的图象关于y轴对称,当x取一对相反数时,函数值不变,将函数y=f(x)的图象向左平移2个单位,得函数y=f(x+2)的图象关于直线x=-2对称,当(x+2)取一对相反数时,函数值不变,于是,函数的解析式只能含(x+2)的偶次

4、方.应用一应用二应用三应用四解析: (法一)函数f(x)的图象关于直线x=-2对称,f(-1)=f(-3)=f(1)=f(-5),f(x)=-x4-8x3-14x2+8x+15.由f(x)=-4x3-24x2-28x+8=0,f(-2)=1-(-2)2(-2)2+8(-2)+15=-3(4-16+15)=-9.应用一应用二应用三应用四故f(x)的最大值为16.(法二)据已知可设f(x)=-(x+2)4+m(x+2)2+n,据f(1)=f(-1)=0,解出m=10,n=-9,则f(x)=-(x+2)4+10(x+2)2-9=-(x+2)2-52+16,故最大值为16.思维升华将已知条件进行转换,

5、有几种转换方法就有可能得出几种解题方法.应用一应用二应用三应用四突破训练突破训练2若关于x的方程9x+(4+a)3x+4=0有解,则实数a的取值范围是(-,-8.解析:(法一)设t=3x,则原命题等价于关于t的一元二次方程t2+(4+a)t+4=0有正解,所以a-8,即实数a的取值范围是(-,-8.应用一应用二应用三应用四(法二)设t=3x,得t2+(4+a)t+4=0.所以a-8,即实数a的取值范围是(-,-8.应用一应用二应用三应用四应用三应用三常量与变量的转化常量与变量的转化 例3已知函数f(x)=x3+3ax-1,g(x)=f(x)-ax-5,其中f(x)是f(x)的导函数.对满足-1

6、a1的一切a的值,都有g(x)0,则实数x的取值范围为 .应用一应用二应用三应用四解析: 由题意,知g(x)=3x2-ax+3a-5,令(a)=(3-x)a+3x2-5,-1a1.对-1a1,恒有g(x)0,即(a)0对x(0,+)恒成立,则实数a的取值范围为(-,-10,+).思维升华函数、方程与不等式三者之间存在着密不可分的联系,解决方程、不等式的问题需要函数帮助,解决函数的问题需要方程、不等式的帮助,因此借助于函数、方程、不等式之间的转化可以将问题化繁为简,常常将不等式的恒成立问题转化为函数的最值问题;将证明不等式问题转化为函数的单调性与最值问题;将方程的求解问题转化为函数的零点问题、两

7、个函数图象的交点问题等.应用一应用二应用三应用四突破训练突破训练4已知函数f(x)=3e|x|.若存在实数t-1,+),使得对任意的x1,m,mZ,且m1,都有f(x+t)3ex,求m的最大值.解 因为当t-1,+),且x1,m时,x+t0,所以f(x+t)3exex+text1+ln x-x.所以原命题等价转化为:存在实数t-1,+),使得不等式t1+ln x-x对任意x1,m恒成立.所以函数h(x)在1,+)内为减函数.又x1,m,所以h(x)min=h(m)=1+ln m-m.所以要使得对任意x1,m,t值恒存在,只需1+ln m-m-1.应用一应用二应用三应用四且函数h(x)在1,+)内为减函数,所以满足条件的最大整数m的值为3.1.在应用化归与转化的思想方法去解决数学问题时,没有一个统一的模式,它可以在数与数、形与形、数与形之间进行转换.2.转化与化归思想在解题中的应用(1)在三角函数和解三角形中,主要的方法有公式的“三用”(顺用、逆用、变形用)、角度的转化、函数的转化、通过正弦、余弦定理实现边角关系的相互转化.(2)在解决平面向量与三角函数、平面几何、解析几何等知识的交汇题目时,常将平面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论