平面向量数量积的坐标表示模夹角1ppt课件_第1页
平面向量数量积的坐标表示模夹角1ppt课件_第2页
平面向量数量积的坐标表示模夹角1ppt课件_第3页
平面向量数量积的坐标表示模夹角1ppt课件_第4页
平面向量数量积的坐标表示模夹角1ppt课件_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、复习引入复习引入1. 平面向量的数量积平面向量的数量积(内积内积)的定义:的定义:复习引入复习引入1. 平面向量的数量积平面向量的数量积(内积内积)的定义:的定义:. )( cos| | 或内积或内积的数量积的数量积与与叫做叫做,我们把数量,我们把数量夹角为夹角为它们的它们的,和和已知两个非零向量已知两个非零向量bababa 复习引入复习引入1. 平面向量的数量积平面向量的数量积(内积内积)的定义:的定义:. )( cos| | 或内积或内积的数量积的数量积与与叫做叫做,我们把数量,我们把数量夹角为夹角为它们的它们的,和和已知两个非零向量已知两个非零向量bababa . cos| baba 即

2、即, ba记为:记为:复习引入复习引入1. 平面向量的数量积平面向量的数量积(内积内积)的定义:的定义:. cos| baba 即即, ba记为:记为: . 000 a,即即为为量量积积零零向向量量与与任任一一向向量量的的数数规定规定:. )( cos| | 或内积或内积的数量积的数量积与与叫做叫做,我们把数量,我们把数量夹角为夹角为它们的它们的,和和已知两个非零向量已知两个非零向量bababa 复习引入复习引入2. 两个向量的数量积的性质两个向量的数量积的性质:., 同向的单位向量同向的单位向量是与是与为两个非零向量为两个非零向量、设设beba复习引入复习引入2. 两个向量的数量积的性质两个

3、向量的数量积的性质:. cos)1( aeaae., 同向的单位向量同向的单位向量是与是与为两个非零向量为两个非零向量、设设beba复习引入复习引入2. 两个向量的数量积的性质两个向量的数量积的性质:. 0)2( baba. cos)1( aeaae., 同向的单位向量同向的单位向量是与是与为两个非零向量为两个非零向量、设设beba复习引入复习引入2. 两个向量的数量积的性质两个向量的数量积的性质:. ,)3(bababa 同同向向时时与与当当复习引入复习引入2. 两个向量的数量积的性质两个向量的数量积的性质:. ,)3(bababa 同同向向时时与与当当. ,bababa 反向时反向时与与当

4、当复习引入复习引入2. 两个向量的数量积的性质两个向量的数量积的性质:. ,)3(bababa 同同向向时时与与当当. ,bababa 反向时反向时与与当当. ,2aaaaaa 或或特别地特别地复习引入复习引入2. 两个向量的数量积的性质两个向量的数量积的性质:. ,)3(bababa 同同向向时时与与当当. ,bababa 反向时反向时与与当当. cos)4(baba . ,2aaaaaa 或或特别地特别地复习引入复习引入2. 两个向量的数量积的性质两个向量的数量积的性质:. ,)3(bababa 同同向向时时与与当当. ,bababa 反向时反向时与与当当. )5(baba . cos)4

5、(baba . ,2aaaaaa 或或特别地特别地复习引入复习引入3. 练习:练习:)(,)(,2, 1)1(的夹角是的夹角是与与则则垂直垂直与与且且已知已知baababa oooo45D.135C.30B.60A.复习引入复习引入3. 练习:练习:)(4,3, 1, 2)2(的的模模为为那那么么向向量量为为之之间间的的夹夹角角与与已已知知bambaba 12D. 6C. 32B. 2A.讲授新课讲授新课?),(),(2211babayxbyxa 表表示示的的坐坐标标和和怎怎样样用用已已知知两两个个非非零零向向量量探求:探求:1. 平面两向量数量积的坐标表示平面两向量数量积的坐标表示: 两个向

6、量的数量积等于它们对应两个向量的数量积等于它们对应坐标的乘积的和坐标的乘积的和. 即即 1. 平面两向量数量积的坐标表示平面两向量数量积的坐标表示: 两个向量的数量积等于它们对应两个向量的数量积等于它们对应坐标的乘积的和坐标的乘积的和. 即即 .2121yyxxba 2.平面内两点间的间隔公式平面内两点间的间隔公式:则则设设),()1(yxa 2.平面内两点间的间隔公式平面内两点间的间隔公式:则则设设),()1(yxa .22222yxayxa 或或2.平面内两点间的间隔公式平面内两点间的间隔公式:),(),()2(2211yxyxa点点和和终终边边的的坐坐标标分分别别为为的的有有向向线线段段

7、的的起起如如果果表表示示向向量量那么那么2.平面内两点间的间隔公式平面内两点间的间隔公式:221221)()(|yyxxa 那么那么(平面内两点间的间隔公式平面内两点间的间隔公式) ),(),()2(2211yxyxa点点和和终终边边的的坐坐标标分分别别为为的的有有向向线线段段的的起起如如果果表表示示向向量量3.向量垂直的断定向量垂直的断定:则则设设),(),(2211yxbyxa 3.向量垂直的断定向量垂直的断定:. 02121 yyxxba则则设设),(),(2211yxbyxa 4.两向量夹角的余弦两向量夹角的余弦:)0( |cosbaba 4.两向量夹角的余弦两向量夹角的余弦:)0(

8、|cosbaba 222221212121yxyxyyxx讲解范例讲解范例:例例1. 知知A(1,2),B(2,3),C(2,5),试判别试判别ABC的外形,并给出证明的外形,并给出证明.例例2. ).1(),4, 6( ),75,( o精精确确到到间间的的夹夹角角、及及求求设设 bababa 讲解范例讲解范例:?1),31,3( ),31,( 的夹角是多少的夹角是多少与与则则已知已知baba 例例3. 讲解范例讲解范例:?1),31,3( ),31,( 的夹角是多少的夹角是多少与与则则已知已知baba 例例3. 讲解范例讲解范例: 评述:知三角形函数值求角时,评述:知三角形函数值求角时,应注重角的范围确实定应注重角的范围确实定.练习:练习:1教材教材P.107练习第练习第1、2、3题题.练习:练习:1教材教材P.107练习第练习第1、2、3题题.2. 知知A(3,2),B(1,1),假设点,假设点21在线段在线段AB的中垂线上,那么的中垂线上,那么)21,( xPx .课堂小结课堂小结. 12121yyxxba 2. 平面内两点间的间隔公式平面内两点间的间隔公式:221221)()(|yyxxa 3. 向量垂直的断定向量垂直的断定:. 02121 yyxxba 阅读教材阅读教材P109到到P112; 2. P108 A组组第第9、10、11题题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论