版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、普宁侨中普宁侨中 郑庆宏郑庆宏 放缩法证明数列不等式放缩法证明数列不等式是数列中的难点内容,在近是数列中的难点内容,在近几几年的广东高考年的广东高考数列数列试题中都有考查试题中都有考查. .放缩法灵活多变,技放缩法灵活多变,技巧性要求较高,所谓巧性要求较高,所谓“放大一点点就太大,缩小一点点又放大一点点就太大,缩小一点点又太小太小”,这就让同学们找不到头绪,摸不着规律,总觉得这就让同学们找不到头绪,摸不着规律,总觉得高不可攀!高考命题专家说:高不可攀!高考命题专家说:“放缩是一种能力放缩是一种能力. .” 如何如何把握放缩的把握放缩的“度度”,使得放缩,使得放缩“恰到好处恰到好处”,这正是放缩
2、,这正是放缩法的精髓和关键所在!法的精髓和关键所在!其实,任何事物都有其内在规律,其实,任何事物都有其内在规律,放缩法也是放缩法也是“有法可依有法可依”的的,本节课我们一起来研究数列,本节课我们一起来研究数列问题中一些常问题中一些常见见的放缩类型及方法,破解其思维过程,揭的放缩类型及方法,破解其思维过程,揭开其神秘的面纱,领略和感受放缩法的无限魅力!开其神秘的面纱,领略和感受放缩法的无限魅力!一一. 放缩目标模型放缩目标模型可求和可求和2311111 ()2222nnN求证:例例1 1231232 ()2222nnnN求证:变变式式1 12311111 ()2 1212121nnN求证:变变式
3、式2 2231232 ()2 122232nnnnN求证:变变式式3 31(niiak k为常数)形形(一一)如如不等式左边可用等比数列前不等式左边可用等比数列前n项和公式求和项和公式求和.分析分析左边左边11(1)22112n112n 12311111 ()2222nnN求证:例例1 1表面是证数列不等式,表面是证数列不等式,实质是实质是数列求和数列求和不等式左边可用不等式左边可用“错位相减法错位相减法”求和求和.分析分析由错位相减法得由错位相减法得 222nn2231232 ()2222nnnN求证:变变式式1 1表面是证数列不等式,表面是证数列不等式,实质是实质是数列求和数列求和2312
4、32222nn左边不能直接求和,须先将其通项放缩后左边不能直接求和,须先将其通项放缩后求和,如何放缩?求和,如何放缩?分析分析2311111 ()2 1212121nnN求证:变变式式2 2将通项放缩为将通项放缩为等比数列等比数列注意到注意到11212nn左边左边11(1)22112n112n 12311112222n左边不能直接求和,须先将其通项放缩后求左边不能直接求和,须先将其通项放缩后求和,如何放缩?和,如何放缩?分析分析注意到注意到222nn2231232 ()2 122232nnnnN求证:变变式式3 3231232222nn左边22nnnnn将通项放缩为将通项放缩为 错错位相减位相
5、减模型模型【方法总结之一方法总结之一】201319)11111()1 33 55 7(21)(21)2nnnN(广东文第(3)问求证:例例2 222211112 ()23nnN求证:变变式式1 12221117(201319(3) )1()234nnN广东理第:问求证变变式式2 222211151()233nnN求证:变变式式3 3左边可用左边可用裂项相消法裂项相消法求和,先求和再放缩求和,先求和再放缩.分析分析11(1)221n12201319)11111()1 33 55 7(21)(21)2nnnN(广东文第(3)问求证:例例2 2表面是证数列不等式,表面是证数列不等式,实质是实质是数列
6、求和数列求和111111(1)()()23352121nn左边1111()(21)(21)2 2121nnnn左边不能求和,应先将通项放缩为左边不能求和,应先将通项放缩为裂项相消裂项相消模型模型后求和后求和.分析分析11 1n 22 ()n保留第一项,保留第一项,从从第二项第二项开开始放缩始放缩111111 (1)()()2231nn 左边21n22211112 ()23nnN求证:变变式式1 11(1)n n11()12nnn当当n = 1时,不等式显然也成立时,不等式显然也成立.变式变式2 2的结论比变式的结论比变式1 1强,要达目的,须将强,要达目的,须将变式变式1 1放缩的放缩的“度度
7、”进行修正,如何修正?进行修正,如何修正?分析分析2221117(201319(3) )1()234nnN广东理第:问求证变变式式2 2保留前两项,从保留前两项,从第三项第三项开始放缩开始放缩思路一思路一211(1)nn n左边左边111142n 714n374()n211111111()()()223341nn 111nn(3)n 将变式将变式1 1的通项从第三项才开始放缩的通项从第三项才开始放缩. .当当n = 1, 2时,不等式显然也成立时,不等式显然也成立.变式变式2 2的结论比变式的结论比变式1 1强,要达目的,须将变强,要达目的,须将变式式1 1放缩的放缩的“度度”进行修正,如何修
8、正?进行修正,如何修正?分析分析2221117(201319(3) )1()234nnN广东理第:问求证变变式式2 2保留第一项,保留第一项,从从第二项第二项开开始放缩始放缩思路二思路二22111nn左边左边11111(1)221nn 111(1)22 274()n1111111(1)()()232411nn 111()211nn(2)n 将通项放得比变式将通项放得比变式1 1更小一点更小一点.当当n = 1时,不等式显然也成立时,不等式显然也成立.变式变式3 3的结论比变式的结论比变式2 2更强,要达目的,须将更强,要达目的,须将变式变式2 2放缩的放缩的“度度”进一步修正,如何修正?进一步
9、修正,如何修正?分析分析保留前两项,保留前两项,从从第三项第三项开开始放缩始放缩思路一思路一左边左边11 11111()42 231nn 11 111()42 23 353()n2111111111()()()22243511nn 22211151()233nnN求证:变变式式3 322111nn111()211nn(3)n 将变式将变式2 2思路二中通项从第三项才开始放缩思路二中通项从第三项才开始放缩.当当n = 1, 2时,不等式显然也成立时,不等式显然也成立.变式变式3 3的结论比变式的结论比变式2 2更强,要达目的,须将更强,要达目的,须将变式变式2 2放缩的放缩的“度度”进一步修正,
10、如何修正?进一步修正,如何修正?分析分析保留保留第一第一项,项,从从第第二项二项开始开始放缩放缩思路二思路二22144nn左边左边1112()321n 1123 253()n11111112 ()()()35572121nn 112()2121nn(2)n 将通项放得比变式将通项放得比变式2 2思路二更小一点思路二更小一点.22211151()233nnN求证:变变式式3 32441n当当n = 1时,不等式显然也成立时,不等式显然也成立.评注评注【方法总结之二方法总结之二】 放缩法证明与数列求和有关的不等式的过程放缩法证明与数列求和有关的不等式的过程中,很多时候要中,很多时候要“留一手留一手
11、”, 即采用即采用“有所保留有所保留”的方法,的方法,保留数列的第一项或前两项,从数列的第保留数列的第一项或前两项,从数列的第二项或第三项开始放缩二项或第三项开始放缩,这样才不致使结果放得过,这样才不致使结果放得过大或缩得过小大或缩得过小. .牛刀小试牛刀小试(变式练习(变式练习1 1)*22211151()35(21)4nnN求证:证明证明21(21)n111(1)4n 114 254n1111111(1)()()42231nn 14 (1)n n(2)n 2144nn111()41nn左边当当n = 1时,不等式显然也成立时,不等式显然也成立.2(1),(1)nnan nbn1122111
12、512nnababab11(1)(21)nnabnn故故1111 111111()62 23341niiiabnn51122(1)5.12n(2)n 当当 时,有时,有 也成立也成立 1n 156121 11()212 (11)nnnnna221nnna 1(1)3niiia a当当 时,有时,有 也成立也成立 1n 2322(1)(21)(21)(21)(22)iiiiiiiiaa 111211(2)(21)(21)2121iiiiii21111111(1)2()()33(2)2 121212121niinnnia an常见的裂项放缩技巧:常见的裂项放缩技巧:)1(212n22112)1(2
13、nnnnnnnnn)2(121121) 12)(12(2)22)(12(2) 12)(12(2) 12(21112nnnnnnnnnnnnnn)3()111(2) 1(21212) 1(1)(1) 11 (12n21210 nnnnnnnCCCCCnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn111) 1(111) 1(11111211212) 12)(12(4144441111121) 1)(1(11112222224.1.3.5.6.2.右边保留右边保留第一项第一项1111231001111231(2009200)0S 珠海二求模理第(2)的整.问例数部分3 3122nn2
14、1nn2(1)nn21nn 2(1)nn 1 2( 100 1)19 182( 101 1)18S 的整数部分是思路思路为了确定为了确定S的整数部分,的整数部分,必须必须将将S的值放缩在相邻的两个的值放缩在相邻的两个整数之间整数之间. .分析分析思路思路左边32nn211111333n 22331(2011113()3232322193(3)22nnnN求广东理第:问证例例4 4利用指数函数的单调性放缩为等比模型利用指数函数的单调性放缩为等比模型23 1 ( ) 3nn123 1 ( ) 3n13n*111()323nnnnN11331213n分析分析左边左边32n21111(1)733n 2
15、3111117()3214323232nnN求证:例例4 4 变变式式2=3 (1)3nn223 (1)3n27 3n21117 3(2)nnan1311(1)143n (2)n 保留第一项,从保留第一项,从第二项第二项开始放缩开始放缩左边不能直接求和,能否仿照例左边不能直接求和,能否仿照例4的方法将通项的方法将通项也放缩为也放缩为等比模型等比模型后求和?后求和? 3171141(2)4n 当当n = 1时,不等式显然也成立时,不等式显然也成立.【方法总结之三方法总结之三】na221nnna 1(1)3niiia a21112111(1)(2)22 21222222iiiiiiiiiaai故故
16、2111111(1)233(2)2222niinnia an当当 时,有时,有 也成立也成立 1n 23(1)(2)1 22(1985)3(1)()22n nn nn nn N全国求:例证5 5(1)(2)1 22 3(1)22n nn nn n 思路思路nT nR123nnTbbbb123nnRcccc1( )niiaf n二形形()如如证明证明(1)n nn (1)2nn12n1 22 3(1)n n1nkk(1)2n n11()2nkk(2)2n n评注评注用分析法寻找证明思路显得一气呵成!用分析法寻找证明思路显得一气呵成!【方法总结之四方法总结之四】二二. 放缩目标模型放缩目标模型可求
17、积可求积135211()24(2060922121 (2) )nnnn N求证东理:例广第问6 6思路思路135211246221nnn nB1 2 3nbbbb1( )niiaf n三(形形如如)证明证明212nn22141nn21()21nnnN1352135721nn左边121n【方法总结之五方法总结之五】牛刀小试牛刀小试(变式练习(变式练习2 2)(1998(1998全国理全国理2525第第(2)(2)问问) )*3111(1 1)(1)(1)(1)31 ()4732nnnN求证:证明证明31(1)32n313113232nnn 333334710313114732nnn2333113
18、2(32)(32)nnn 33113232nnn 左边课堂小结课堂小结 本节课我们一起研究了本节课我们一起研究了利用放缩法证明数列不等利用放缩法证明数列不等式式,从中我们可以感受到在平时的学习中,从中我们可以感受到在平时的学习中有意识地去有意识地去积累积累总结总结一些常用的一些常用的放缩模型和放缩模型和放缩方法非常必要放缩方法非常必要,厚积薄发,厚积薄发,“量变引起质变量变引起质变”. . 当然,要想达到炉火当然,要想达到炉火纯青的深厚功力,还必须在实践中不断去感悟,仔细纯青的深厚功力,还必须在实践中不断去感悟,仔细揣摩其方法,逐步内化为自己个人的揣摩其方法,逐步内化为自己个人的“修为修为”. .
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024特许加盟合同协议范本
- 2025年度矿产资源整合采矿权抵押交易合同样本3篇
- 2025年度圆通快递快递员权益保障及培训合同3篇
- 2025年度工业园区厂房及仓储场地租赁合同范本2篇
- 2025年度物流数据分析与挖掘服务合同4篇
- 2024美容美发连锁加盟合同
- 2024装饰工程承包合同书
- 2025年度物流车辆数据信息服务合同4篇
- 2024版设备销售与服务合同
- 2025年度MCN艺人品牌合作推广合同3篇
- 2025年河北供水有限责任公司招聘笔试参考题库含答案解析
- Unit3 Sports and fitness Discovering Useful Structures 说课稿-2024-2025学年高中英语人教版(2019)必修第一册
- 农发行案防知识培训课件
- 社区医疗抗菌药物分级管理方案
- NB/T 11536-2024煤矿带压开采底板井下注浆加固改造技术规范
- 2024年九年级上德育工作总结
- 2024年储罐呼吸阀项目可行性研究报告
- 除氧器出水溶解氧不合格的原因有哪些
- 冲击式机组水轮机安装概述与流程
- 新加坡SM2数学试题
- 毕业论文-水利水电工程质量管理
评论
0/150
提交评论