版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、学习必备欢迎下载课题: 3.2.1 任意角的三角函数(第一课时)一 教学目标1. 掌握任意角的正弦、余弦、正切的定义;2. 理解任意角的三角函数不同的定义方法;3. 已知角 终边上一点,会求角的各三角函数值. 二 教学重难点:重点 : 任意角的正弦、余弦、正切的定义。难点 : 任意角的三角函数不同的定义方法;已知角 终边上一点, 会求角 的各三角函数值. 三 复习回顾:复习 1: 用弧度制写出终边在下列位置的角的集合. (1)坐标轴上;(2)第二、四象限. 复习 2: 锐角的三角函数如何定义?在初中,我们如果要求一个锐角的三角函数值,经常把这个角放到一个直角三角形中求其比值,从而得到锐角三角函
2、数的值。那么,你能用直角坐标系中角的终边上的点的坐标更方便的去求一个锐角的三角函数值吗?我们可以采用以下方法:如图,设锐角的顶点与原点o重合,始边与x轴的非负半轴重合,那么它的终边在第一象限. 在的终边上任取一点( , )p a b , 它与原点的距离220rab. 过p作 x 轴的垂线, 垂足为m, 则线段om的长度为 a ,线段mp的长度为b. 可得:sinmpbopr; cos = , tanmpom= .四、新课学习:知识点 1:三角函数的定义认真阅读教材p11-p12,领会下面的内容:由相似三角形的知识,对于确定的角,这三个比值不会随点 p在的终边上的位置的改变而改变,因此我们可以将
3、点p取在使线段op的长为 r=1 的特殊位置上,这样就可以得到用直角坐标系内的点的坐标表示的锐角三角函数的值为:sinmpop_; cosomop_; tanmpom_ 问题: 上述锐角的三角函数值可以用终边上一点的坐标表示. 那么,角的概念推广以后,我们应该如何得到任意角的三角函数呢?显然,我们只需在角的终边上找到一个点,使这个点到原点的距离为1,然后就可以类似锐角三角函数求值的方法得到该角的三角函数值. 注:单位圆:在直角坐标系中, 我们称以原点o为圆心 , 以单位长度为半径的圆为单位圆. 上述的点p 就是的终边与单位圆的交点,这样锐角三角函数就可以用单位圆上的点的坐标表示。那么我们可以用
4、同样的方法得到任意角的三角函数值。如图,设是一个任意角,它的终边与单位圆交于点( , )p x y ,那么:(1)y 叫做的正弦 (sine),记做sin;(2)x 叫做的余弦 (cossine),记做 cos;(3)yx叫做的正切 (tangent),记做tan. 即: siny , cosx , tan(0)yxx. mp(a,b)oxymp(a,b)mp(a,b)oxy精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 1 页,共 14 页 - - - - - - - - -学习必备欢迎下载练习: 角34与单位圆的交点坐标为,则 sin34= ,c
5、os34= ,tan34= . 注:1) 当()2kkz 时, 的终边在 y 轴上,终边上任意一点的横坐标x都等于 0,所以xytan无意义 . 2)三角函数的定义域:函数定义域xysinrxycosrxytan,2|zkkxx确定三角函数的定义域时,要抓住分母不为0 这一关键, 当角的终边在坐标上时,点 p的坐标中必有一个为0. 3)由于角的集合与实数集之间可以建立一一对应关系,因而三角函数可以看成是自变量为实数的函数 , 正弦、余弦、正切都是以角为自变量,以单位圆上的点的坐标或坐标的比值为函数,我们将它们统称为三角函数。探究:如果知道角终边上一点, 而这个点不是终边与单位圆的交点,该如何求
6、它的三角函数值呢? 根据相似三角形的性质,在直角坐标系中,设 是一个任意角, 终边上任意一点p(除了原点)的坐标为( , )x y ,它与原点的距离为2222(| |0)r rxyxy,则:sinyr; cos=rx;tan=xy. 注意: 一个角的三角函数值只与这个角的终边的位置有关,而与点的选取无关。为计算方便, 我们把半径为1的圆(单位圆) 与角的终边的交点选为点的理想位置。典型例题:例: 求43角的正弦、余弦和正切值变式练习1 求56角的正弦、余弦和正切值小结: 作角终边求角终边与单位圆的交点利用三角函数定义来求, 或在角的终边上找一个容易找到的点,利用sinyr, cos=rx,ta
7、n=xy求三角函数值. 2、求35角的正弦、余弦和正切值精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 2 页,共 14 页 - - - - - - - - -学习必备欢迎下载例: 已知角的终边经过点p(4, 3) ,求 sin、cos、tan的值;练习 :已知角的终边经过点p(-4, 2) ,求 sin、cos、tan的值;方法总结 :首先判断角的终边是否在单位圆上,再确定做题的方法。例:已知角的终边经过点p(4a, 3a)(a 0) ,求 2sin+cos的值;例:已知角的终边在直线y=-3x 上,求 sin,cos,tan的值。.cos,sin
8、,1010cos)0)(3 ,(求,且终边上一点练习:已知角xxp的定义域。例:求xxxytancossin的定义域。练习:求函数xysincosx当堂检测1. tan()4(). a. 1 b. 1 c. 22 d. 222. 7sin6(). a. 12 b. 12 c. 32 d. 323. 如果角 的顶点在原点, 始边在x轴的正半轴重合, 终边在函数5(0)yxx的图象上,那么tan的值为(). a. 5 b. 5 c. 15 d. 154. cos( 30 ) . 5. 已知点(3 , 4 )paa (0)a在角 的终边上,则tan= . 精品学习资料 可选择p d f - - -
9、- - - - - - - - - - - 第 3 页,共 14 页 - - - - - - - - -学习必备欢迎下载课后作业:(一)选择题1、已知角 的终边过点p( 1,2 ),cos 的值为() a 55 b5 c552 d252、是第二象限角,p(x, 5 ) 为其终边上一点, 且 cos=42x,则 sin 的值为 ()a410 b46 c42 d410二填空题3、角的终边上有一点p(m ,5) ,且)0(,13cosmm,则 sin +cos=_4、已知角 的终边在直线y = 33x上,则 sin = ;tan= 三 解答题5、已知角终边上一点p与x轴的距离和与y 轴的距离之比为3
10、4(且均不为零) ,求 2sin+cos的值精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 4 页,共 14 页 - - - - - - - - -学习必备欢迎下载知识点二:任意角的三角函数值在各象限内的符号:由于0r,所以任意角的三角函数的符号取决于点p所在的象限当角的终边在第一象限时, 点p在第一象限,0,0 xy, 所以 sin0,cos0,tan0 ;当角的终边在第二象限时,点p在第二象限,0,0 xy, 所以 sin0,cos0,tan0 ;当角的终边在第三象限时,点 p在第三象限,0,0 xy, 所以 sin0,cos0,tan0 ;当角
11、的终边在第四象限时,点 p在第四象限,0,0 xy, 所以 sin0,cos0,tan0 任意角的三角函数符号的记忆方法:典型例题:例: 判定下列各角的各三角函数符号:(1)4327 (227547tan)445cos)36sin6cos)6230cos105sin)5分析关键是判定角所在的象限练习: 判断下列三角函数值的符号。3tan)4)672tan()3)4sin()2250cos)1例: 根据条件sin0且tan0, 确定是第几象限的角. 练习:是第几象限角?请你判断0tan0sin练习:书第15 页练习练习 :请你求下列各角的三角函数值并背会:2 ,611,35,47,34,23,3
12、4,45,67,65,43,32,2,3,4,6,0全正正切正余弦正正弦正x y o 精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 5 页,共 14 页 - - - - - - - - -学习必备欢迎下载练习 :求下列三角函数的值:)611tan()249cos)1例: 求下列各式的值: (1) 5cos1803sin902tan 06sin 270 ;(2) cossintan3sinsincos364344. 巩固性练习1计算: 5sin902cos03tan180cos180 2计算:213costantansincos24332当堂检测:1
13、、判别下列各三角函数值的符号:1)sin250 2)cos(4) 3)tan( 66636) 4)tan113 5)sin174 6)cos10202、根据下列已知,判别 所在象限:1)sin 0且 tan 0 、 tancoscosx呢?当堂检测:1、作出下列各角的正弦线、余弦线、正切线。(1)3;(2)56;(3)23;(4)13654tan32tan)(354cos32cos)(254sin32sin)(12与与与、比较大小:3、 利用单位圆写出符合下列条件的角x的范围;21sin)1(x.21cos)2(x)(21sin204的取值范围是的上满足,、在xx,65.d326.c656.b
14、6, 0.a5、求满足下列条件的角x的范围:(1)0tansinxx;(2)xxcos|cos|6、求证:2cossin1。精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 10 页,共 14 页 - - - - - - - - -学习必备欢迎下载知识点五:同角三角函数的基本关系推导: 以正弦线、余弦线和半径三者的长构成直角三角形,而且,由勾股定理有:222opmpom即1cossin22,根据三角函数的定义,当zkk,2时,有tancossin, 讨论几个问题:a.上述两个关系式,在一些什么情况下成立?b.“ sin2cos21”对吗?c. 同角三角
15、函数关系式可以解决哪些问题?(求值:已知一个角的三角函数值,求这个角的其他三角函数的值;化简;证明)d.从上面两个公式,你还能推导出同角三角函数的其它关系吗?22222222222cossin4tancottanseccoscscsin1141cottan; 1seccos; 1cscsin3.cotsincos;tancossin2;tan11cos;cossin21)cos(sin.csc1cot;sec1tan; 1cossin1”的妙用:、“、倒数关系:、商数关系:、平方关系:种关系:注:同角三角函数的几12cot2tan; 13cos3sin32sin)(sinsinsinsin21
16、2222)、角的变换:()、(义;要使上述各种式子有意)、角注意:(同角三角函数的基本关系式的主要应用是,已知一个角的三角函数值,求此角的其它三角函数值。 在运用平方关系解题时,要根据已知角的范围和三角函数的取值,尽可能地压缩角的范围, 以便进行定号; 在具体求三角函数值时,一般不需用同角三角函数的基本关系式,而是先根据角的范围确定三角函数值的符号,再利用解直角三角形求出此三角函数值的绝对值。典型例题:例: 已知 cos35,求 sin ,tan 的值 . 练习: 已知 sin 513,求 cos, tan 的值 . 小结: 注意符号(象限确定) ;同角三基本式的运用(分析联系);知一求二 .
17、 练习:已知 tan m(m 0) ,求 sin ,cos的值 . (分象限讨论)精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 11 页,共 14 页 - - - - - - - - -学习必备欢迎下载 化简 costan . (化简方法:切化弦) 化简下列各式:21cos 1100例: 1)已知 0,的值。求cossin,16960cossin2) 已知 0,的值。求cossin,51cossin3)已知的值。求33cossin,cossinm。求已知)、求)、已知例:cot,sin,178cos2.tan,cos,54sin1小结 :给值求值:
18、已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值 . 化简的要求(化简后的式子,三角函数的种类最少;分母不含根式;项数最少;能求出值的求出值)例:化简:4cos4sin2122cos3cossin3sin2)2sin4cos3cossin)12tan,求值例:已知.sin-cossincossincossincos,cos2sin3的值求练习:已知例:用多种方法证明:1sincosxxcos1sinxx精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 12 页,共 14 页 - - - - - - - - -学习必备欢迎下载小结方法:由其它等式而转化(先证交叉乘积相等);或证和(差),或证商比较法;直接证明左边等于右边或右边等于左边或可以左右归一。. 练习:求证: sin2x tan2x =tan2xsin2x. 练习: 已知 sin=2sin ,tan=3tan ,求2cos的值 . 已知4sin+4cos=1,求 sin +cos的值 . 小结 :注意象限定符号和联系关系式. 灵活运用公式,注意平方关系,切化弦;化繁为简. 当堂检测:1. 已知 的一个三角函数值,求其它三角函数值:cos13; tan 4 .tancos,53sin2的值求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版交通设施地形图保密及规划合同3篇
- 二零二五版建筑工程施工图纸审查招标投标合同书3篇
- 二零二五年度花展工程花卉品种研发与专利申请合同3篇
- 二零二五年度绿色建筑项目采购合同3篇
- 二零二五版XX个人商业秘密保护合同样本3篇
- 二零二五年度私人墓地购置与墓园墓碑雕刻人才培养合同3篇
- 二零二五年度金融机构贷款担保与信用管理合同3篇
- 二零二五版家庭水电维修与改造兼职合同3篇
- 二零二五版废旧电线电缆回收与资源化利用合同3篇
- 二零二五年度食品行业环境保护设施租赁合同2篇
- 小学一年级英语1a期末学业评价方案
- 中央广播电视大学毕业生登记表-6
- 抢救制度试卷附有答案
- 劳务派遣劳务外包服务方案(技术方案)
- 2023年药品注册专员年度总结及来年计划
- 易普拉格科研管理系统
- 最终版 古城文化修复监理大纲
- 拔罐技术操作考核评分标准
- 软件无线电原理与应用第3版 课件 第4-6章 软件无线电硬件平台设计、软件无线电信号处理算法、信道编译码技术
- RB-T 099-2022 进口食品供应商评价技术规范
- 戒赌法律协议书范本
评论
0/150
提交评论