轻松应用均值不等式_第1页
轻松应用均值不等式_第2页
轻松应用均值不等式_第3页
免费预览已结束,剩余6页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、运用均值不等式的八类拼凑方法利用均值不等式求最值或证明不等式是高中数学的一个重点。在运用均值不等式解题时,我们常常会遇到题中某些式子不便于套用公式,或者不便于利用题设条件,此时需要对题中的式子适当进行拼凑变形。均值不等式等号成立条 件具有潜在的运用功能。以均值不等式的取等条件为出发点,为解题提供信息,可以引发出种种拼凑方法。笔者把运 用均值不等式的拼凑方法概括为八类。一、拼凑定和 通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系 数,拼凑定和,求积的最大值。例 已知 0 x 1,求函数 y x3 x2 x 1 的最大值。2 2 2解: y x2

2、 x 1 x 1 x 1 1 x2x 1 1 x3227x1当且仅当 x 132。27解 : yx2 。22因 x x 1x222x x 1 x22231,271 x,即 x 1 时,上式取“ =”。故 ymax23评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。例 2 求函数 y x2 1 x2 0 x 1 的最大值。2当且仅当x 1 x ,即 x 6 时,上式取“ =”。故 ymax 2 3 。2 3 9评注: 将函数式中根号外的正变量移进根号内的目的是集中变元,为“拼凑定和”创造条件 例3 已知 0 x 2 ,求函数 y 6

3、x 4 x2 的最大值。2解: y236x24x2182x24x24x22x2 4 x2 4 x2318 8327当且仅当 2x 4 x ,即 x 3 时,上式取“ =”。故 ymax27 ,又 y 0, ymax3二、拼凑定积 通过裂项、分子常数化、有理代换等手段,变为“和”的形式,然后以均值不等式的取等条件为出发点, 配项凑定积,创造运用均值不等式的条件例4 设 x1 ,求函数 y x 5 x 2 的最小值。x1解:y x 1 4 x 1 1 x 1 4 5 2 x 1 4 5 9。当且仅当 x 1时,上式取“ =”。故 ymin 9 。评注:有关分式的最值问题,若分子的次数高于分母的次数

4、,则可考虑裂项,变为和的形式,然后“拼凑定积” 往是十分方便的。24 x 1例5 已知 x 1 ,求函数 y 2 的最大值。x 3 2解:x 1, x 1 0 ,24 x 12x 1 4 x 1 424x 1 4 4x1242 2 4当且仅当 x 1 时,上式取“ =”。故 ymax 3。评注: 有关的最值问题,若分子的次数低于分母的次数,可考虑改变原式的结构,将分子化为常数,再设法将分母拼凑定积” 。2 cos x例 6 已知 0 x ,求函数 y 的最小值。sin xxx解: 因为 0 x ,所以 0 ,令 tant ,则 t 0 。2 2 2所以 y1sin x1 cos xsin x2

5、t1 t 2t当且仅当=”。故 ymin3 。1 3t ,即 t3 , x时,上式取2t 2 3 3评注: 通过有理代换,化无理为有理,化三角为代数,从而化繁为简,化难为易,创造出运用均值不等式的环境。三、拼凑常数降幂例7 若 a3 b3 2,a, b R ,求证: a b 2。分析:基本不等式等号成立的条件具有潜在的运用功能,它能在“等”与“不等”的互化中架设桥梁,能为解题提供信息,开辟捷径。本题已知与要求证的条件是 a b 1,为解题提供了信息,发现应拼凑项,巧妙降次,迅速促成“等”与“不等”的辩证转化。证明: a3 13 13 33 a3 13 13 3a,b3 13 13 33 b3

6、13 13 3b 。33a3 b3 4 6 3 a b , a b 2. 当且仅当 a b 1时,上述各式取“ =”,故原不等式得证。评注:本题借助取等号的条件,创造性地使用基本不等式,简洁明了。例8 若 x3 y3 2,x,y R ,求 x2 y2 5xy 的最大值。解: 3 1 xx 1x3x3,3 1y y1y3y3 ,31 xy 1 x3y3,2 2 1x3x3 1y3y35 1x3y37 7 x3y3x2 y2 5xy7 。33当且仅当 a b 1时,上述各式取“ =”,故 x2 y 2 5xy 的最大值为 7。例9 已知 a,b, c 0,abc 1,求证: a3 b3 c3 ab

7、 bc ca 。证明:1a3b33 1a b,1b3c3 3 1b c,1c3a33 1c a,3 2a3b3c33 abbcca,又ab bcca33a2b2c2 3 ,3333 333 2a3b3c32 abbcca3,a3 b3c3abbc ca 。当且仅当 a b c 1时,上述各式取“ =”,故原不等式得证。四、拼凑常数升幂例10 若 a ,b,c R ,且 a b c 1,求证 a 5 b 5 c 5 4 3 。1 分析: 已知与要求证的不等式都是关于a,b,c 的轮换对称式,容易发现等号成立的条件是a b c ,故应3拼凑 16 ,巧妙升次,迅速促成“等”与“不等”的辩证转化。证

8、明: 2 16 a 5 16 a 5 , 2 16 b 5 16 b 5 , 2 16 c 5 16 c 5 ,b 5 c 5 31 a b c 32. a 5 b 5 c 5 4 3 。当且仅当 a b c 时,上述各式取“ =”,故原不等式得证。333例11 若 a b 2,a,b, R ,求证: a3 b3 2 。证明: 3 1 1a 13 13 a3,3 1 1 b 13 13 b3, 3 a b 4 a3 b3。33又 a b 2, a3 b3 2 。当且仅当 a b 1时,上述各式取“ =”,故原不等式得证。1五、约分配凑通过“ 1”变换或添项进行拼凑,使分母能约去或分子能降次。例

9、1228已知 x, y, 0,1,求 xy的最小值。xy解: x y x y126 x4y32y46x4y当且仅当 2 8xy1 时,即24.y16 ,上式取“ =”,故 xy min 64。例13 已知 0 x 1,求函数 yx 解: 因为 0 x 1,所以 1 x 0 。11x的最小值。41所以 y 4 1 x 1 x x1x11x5 4 1 x x 9 。x 1 x当且仅当4 1 x x 2时,即 x ,上式取“ =”,故 ymin 9 。 1 x 3a2b 2c21例14 若 a ,b,cR ,求证 abc1a b c 。b c c a a b 2分析: 注意结构特征:要求证的不等式是

10、关于 a,b,c 的轮换对称式,当 a b c 时,等式成立。此时bca,2a设m b c2a,解得 m1 a 2 b c1 ,所以 a 应拼凑辅助式 b c 为拼凑的需要而添,经此一添,解题可见眉目。4 b c 4证明:bca2b cb c a, b2 c a 2 b2 c a b, c2 a b c a 4c。b2abc21 a b c 。当且仅当 a b c时,上述各式取“ =”,故原不等式得证。2六、引入参数拼凑某些复杂的问题难以观察出匹配的系数,但利用“等”与“定”的条件,建立方程组,解得待定系数,可开 辟解题捷径。149例15 已知 x, y, z R ,且 x y z 1,求 的

11、最小值。 xyz解: 设 0 ,故有 x y z 1 0。149149x y z 1 1xxyzxyz x2 4 6 12 。当且仅当 x, y,z 同时成立时上述不等式取“ =”,xyz为 36 。,代入 x y z 1,解得36,此时 1236 , 故 1 4 9 的最小值xyz七、引入对偶式拼凑 根据已知不等式的结构,给不等式的一端匹配一个与之对偶的式子,然后一起参与运算,创造运用均值不等 式的条件。例16设a1,a2, ,an 为互不相等的正整数,求证a21 a22 a23an21111 。1 2n12 22 32n2123n证明: 记 bna21a22a23an2 ,构造对偶式dn1

12、111 ,123na1a2a3an则 bndna211a221a23 1a2n12 1111 ,nn12a122a232 a3n2an123n当且仅当 ai i i N ,i n 时,等号成立。又因为 a1, a2, ,an 为互不相等的正整数,1 1 1 1 1 1 1 1所以 d n,因此 bn。n 1 2 3 n n 1 2 3 n评注: 本题通过对式中的某些元素取倒数来构造对偶式。八、确立主元拼凑在解答多元问题时,如果不分主次来研究,问题很难解决;如果根据具体条件和解题需要,确立主元,减少变元 个数,恰当拼凑,可创造性地使用均值不等式。1例17 在 ABC中,证明 cos Acos B

13、 cosC。8分析:cosAcosBcosC为轮换对称式, 即A,B,C的地位相同, 因此可选一个变元为主元, 将其它变元看作常量 (固 定),减少变元个数,化陌生为熟悉。证明: 当 cosA 0 时,原不等式显然成立。1当cosA 0时, cos Acos B cosCcos A cos B C cos B C1 cos A cos B C cos A1 1 cos A 1 cos A12cosA 1 cosA 21 cosA 1 cosAcos(B C) 1 当且仅当 ,即 ABC 为正三角形时,原不等式等号成立。cos A 1 cos A综上所述,原不等式成立。评注:变形后选择 A 为主元,先把 A 看

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论