数学建模——葡萄酒的质量分析_第1页
数学建模——葡萄酒的质量分析_第2页
数学建模——葡萄酒的质量分析_第3页
数学建模——葡萄酒的质量分析_第4页
数学建模——葡萄酒的质量分析_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、葡萄酒的质量分析摘要据考古学家考证,人类在10000年前的新石器时代就开始了采集野生葡萄果实及进行天然的葡萄酒酿造。而中国古代即有各种野生葡萄,古人称葡萄为蒲桃,为皇家果园的珍奇果品。周朝已有蒲桃的记载。葡萄酒历史悠久,在今天也越来越受广大人民的喜爱,我们将在本文中对葡萄酒的评价及葡萄酒与酿酒葡萄之间的联系建立模型。针对问题1:我们要分析两组评酒员的评价结果有无明显差异。我们先求出它们的方差进行对比,在评价酒的质量的好坏时,要考虑外观、香气、口感和平衡(整体),将它们综合起来才是评价葡萄酒的综合标准。我们求出每一个小组对某一种酒的评价的平均值及方差,用matlab程序作出对应的方差波动图。通过

2、两组数据和图的对比,可看出第一小组的变化波动比第二组的变化波动大。因此,我们认为第二组的评价结果更可信。针对问题2:在附录二中葡萄酒的理化指标只取一级指标,剔除二级指标。对多次测试的项目取平均值,精简得到酿酒葡萄的理化指标分析表,共27个指标。为了把指标复杂的关系进行简化,对理化指标用spss做主成分分析并求解第i样红葡萄综合指数zi。zi=+b1 i=1,2,3.27 , n=1,27同理可求白葡萄的综合指数,然后根据所求解得到的数据zi进行分段划分,进而划分酿酒葡萄的级别:红葡萄酒为:第一类:得分大于2, 9、23。第二类:得分21,3、17、2、20。第三类:得分10,14、5、19。第

3、四类:得分小于-2, 10、25、15、18、7、11。白葡萄酒为:第一类,得分大于2: 17、22。第二类,得分20: 5、9、28、10、21、27、1。第三类,得分0-2,26、2、18、13、14、7。第四类,得分小于-2: 12、8、11、16。针对问题3:所用的方法和问题2相同,我们仍用主成分分析法来建立模型。首先分析酿酒葡萄与葡萄酒理化指标间的联系,葡萄酒中的花色苷、单宁、总酚、酒总黄酮、白黎芦醇、dpph半抑制体积、色泽等影响着葡萄酒的质量。我们从问题2中找出影响葡萄酒较大的酿酒葡萄的理化指标,将葡萄酒的理化指标和这些数据拟合中一起,再用spss程序计算出结果,就可以直接得到他

4、们之间的相关矩阵。针对问题四:在评价葡萄酒的质量时,我们要考虑外观,香气,口感和平衡/评价。将问题2和问题3中求出的相互影响的主要数据综合中一起,建立相应的模型:再用spss程序计算出最后的结果为:=89.308-0.002x1+1.727x2-1.615x3+0.0.148x17(红葡萄酒)=69.105-0.595x1-0.789x2-0.256x3+0.085x16(白葡萄酒)关键词:线性回归 matlab spss 主成分分析法 一、问题重述确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量

5、。酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。请尝试建立数学模型讨论下列问题:1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。4分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?附件1:葡萄酒品尝评分表(含4个表格)附件2:葡萄和葡

6、萄酒的理化指标(含2个表格)附件3:葡萄和葡萄酒的芳香物质(含4个表格)二、符号说明 酿酒葡萄的不同的理化指标 各葡萄样本与主成分的关系矩阵 酿酒葡萄理化指标提取的主成分对应理化指标中的贡献率 各葡萄酒评分量纲化处理后的数值 主成分与其贡献率的乘积加上葡萄酒评分数值构成线性组合 为y的估计值或预测值 a 为截距(常数项) bi 为偏回归系数三、问题分析问题1要建立一个模型判断两组评酒员评价酒的价值时有无显著性差异,我们在解题的过程中,首先对附录一中的数据进行处理,每一个评酒员对每一种酒的评价都不相同。我们在数据处理时,先求出它们对某一种酒的评价的分数,再求出这一小组对这种酒的评价均值及评价的无

7、偏方差。建立表格,将这些评价的分数综合在一起,这样有利于我们对比第一、二组对不同酒的评价。就红葡萄酒和白葡萄酒之间不同的评价及评价的方差,我们可以用matlab程序分别作出第一、二组的方差对比图和t,f的检验,根据第一、二组的评价的方差的波动大小,我们就可以清晰地看出他们之间的变化差异。问题2题目中要求我们要建立一个模型根据酿酒葡萄的理化指标和葡萄酒的质量对酿酒葡萄进行分级。题目对葡萄酒样品给出了葡萄酒品尝评分表、理化指标分析表和芳香物质分析表。由于酿酒葡萄酒理化指标分析表和芳香物质分析表无法直接对葡萄酒的质量进行判断。因此,把酿酒葡萄的理化指标作为对葡萄酒质量的评定。在处理数据时,由于数据太

8、多,我们将酿酒葡萄的理化指标综合,用主成分分析法处理酿酒葡萄的理化指标,将所有指标用spss缩减为几个主成分,根据附录二给出的数据,用主成分分析法建立相应的数学模型,对葡萄进行分级。问题3在这个问题中需要我们建立模型分析酿酒葡萄与葡萄酒的理化指标自己的关系。在葡萄酒的理化指标中,花色苷、单宁、总酚、酒总黄酮、白黎芦醇、dpph半抑制体积、色泽等都是影响葡萄酒质量的因素。而我们根据问题二的结果从酿酒葡萄的理化指标中选出几个主要成分做一个文件,根据相应的数据,将酿酒葡萄与影响葡萄酒的主要因素用spss软件计算出他们之间的相关矩阵,我们可以认为相关矩阵中显示出的数据就是酿酒葡萄与葡萄酒的理化指标之间

9、的联系。问题4 在这个问题中,我们需要同时考虑酿酒葡萄和葡萄酒的理化指标,再分析它们对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量。在解决问题的过程中,我们可以根据问题2和问题3得出的结论选出影响的主要因素结合附录一葡萄酒的质量的平均值,建立多元线性回归模型,用spps软件计算出结果。四、模型假设1、在建立模型的过程中,只针对给出的这几种酒,不考虑其他酒的影响;2、葡萄酒的质量不考虑芳香物质的影响只考虑理化指标的影响;3、葡萄酒的二级理化指标的信息全部反应在相对应得一级理化指标中。五、模型的建立和求解问题1:我们先找出每组中每一个评酒员对于某一种酒的评价总分,再求出这

10、一组对这种酒的评价均值,以及他们的无偏方差,他们的计算方式如下:评价均值=1/10*(评酒员1的评价+评酒员2的评价+···+评酒员10的评价)无偏方差=1/9*(评酒员1的评价-评价均值)2+(评酒员10的评价-评价均值)2根据他们的计算结果,我们得出下表数据:酒样号第一组对红葡萄酒的评价第一组对白葡萄酒的评价第二组对红葡萄酒的评价第二组对白葡萄酒的评价评价均值无偏方差评价均值无偏方差评价均值无偏方差评价均值无偏方差162.792.98292.2222268.181.8777877.925.87778280.339.7888974.2201.06677416.2

11、222275.849.06667380.445.8222285.3365.122274.630.7111175.6142.4889468.6108.044479.444.7111171.241.2888976.942.1573.362.0111171126.444472.113.6555681.526.27778672.259.7333368.4162.711166.321.1222275.522.72222771.5103.611177.539.1666765.362.6777874.242.17778872.344.0111171.4183.66665.1111172.331.122229

12、81.532.9444472.992.7666778.225.7333380.4106.26671074.230.474.3212.677868.836.1777879.870.41170.170.7666772.3177.122261.638.0444471.487.822221253.979.6555663.3115.788968.325.1222272.4140.04441374.644.9333365.9170.766768.815.2888973.946.7666714733672114.222272.623.1555677.115.877781558.785.5666772.413

13、1.665.741.3444478.454.044441674.918.17417869.920.167.382.233331779.388.0111178.8144.177874.59.16666780.338.455561860.142.7666773.1156.544465.450.2666776.730.233331978.647.3777872.246.472.655.1555676.426.044442078.626.0444477.864.475.839.0666776.650.044442177.1116.176.4172.711172.235.5111179.264.4227

14、7.250.6222271138.666771.624.2666779.453.62385.632.4888975.943.6555677.124.7666777.411.6247874.8888973.3111.122271.510.7222276.138.544442569.264.6222277.133.8777868.243.7333379.5106.52673.831.2888981.372.97241.5555674.3102.9277349.7777864.8144.471.520.57735.555562881.380.4555679.625.37778根据以下图表,我们可以用

15、excel分别计算出第一、二组对红葡萄酒和白葡萄酒的评价的无偏方差对比,利用matlab(程序见附录1)可以便捷的绘制出第一、二组的变化波动,如下(蓝线表示第一组,红线是第二组): 图一 表示两组对红葡萄酒的评价的方差波动 图二 表示两组对白葡萄酒的评价的方差波动通过对比,我们还可以把两个图合并在一起看,如下: 图三 两个组对红、白葡萄酒的评价方差的对比根据以上的图一、图二及图三,都可以看出第一组的评价方差波动比第二组的评价方差波动大,我们就可以认为在评酒时,第二组的结果更可信。问题二:在解决这个问题时,葡萄酒的理化指标分为一级指标和二级指标,由于二级指标都在一级指标中进行反应,故剔除二级指标

16、。对多次测试的项目取平均值,精简得到酿酒葡萄的理化指标分析表,共27个指标。由于指标太多,并且多指标之间往往存在着一定程度的相关性。为了把指标复杂的关系进行简化,对理化指标做主成分分析。主成分分析模型:酿酒葡萄的无量纲化理化指标有27个,设为x1,x2x27。令x=(x1,x2x27),假定存在二阶矩阵,其均值和协方差分别记为.主成分的方差依次递减,重要性依次递减,即。如果第一主成分表达的信息不够,这依次往下找。主成分对整个数据的反应能力越强,则它对数据的贡献率越大。一般,累积贡献率达到85%左右就可以说对数据有了较好的反映。将数据(附录2中酿酒葡萄的数据)带入spss,得出结果.综合评价模型

17、: 酿酒葡萄的分级和酿酒葡萄的理化指标、葡萄酒的质量有关。葡萄的评分决定葡萄酒的质量,设评分量纲化数值为b1,b2,b3,bx。通过主成分分析酿酒葡萄的理化指标进行将变量缩减。由于以上数据都做了量纲化处理,所以这些数据可以进行比较。主成分与其贡献率加上葡萄酒评分数值构成线性组合,其中的累积贡献率很大,这些主成分可代表理化指标的信息。考虑到酿酒葡萄与葡萄酒的质量、酿酒葡萄的理化指标有关。令综合数值z:即 z1=+b1由于各样品的综合成分值各不相同。当得分越高时,样品葡萄的等级越高。 将酿酒红葡萄的理化指标带入spss软件中,进行主成分分析。提取主要结果为:解说总变异量成份初始特徵值平方和負荷量萃

18、取總和變異數的%累積%總和變異數的%累積%16.45223.89623.8966.45223.89623.89624.63917.18141.0774.63917.18141.07733.29212.19453.2713.29212.19453.27142.83310.49263.7622.83310.49263.76251.9587.25171.0131.9587.25171.01361.2884.77275.7851.2884.77275.78571.2024.45280.2371.2024.45280.237上图表给出了各个因子的贡献率,第1个因子的贡献率是23.896%,第2个因子的贡

19、献率是17.181%,第3个因子的贡献率是12.194%,第3、4、5、6、7、8因子的贡献率分别是10.492%、7.251%、4.772%、4.452%,这7个因子的累积贡献率达到80.273%,则这7个因子能反应足够的信息。成分矩阵成份1234567氨基酸总量.313.573-.108.466-.188-.199-.100蛋白质.645-.480-.078.271.216-.174-.118vc含量-.124-.423-.055-.011-.552.193.030花色苷.851-.038.181-.313.042.142.039酒石酸.394.068-.368.387.341-.532.

20、100苹果酸(g/l).389.295-.144-.672.015.276.254柠檬酸.306.143-.402-.363.379-.459.272多酚氧化酶活力.290.169.191-.587.282-.024-.290褐变度.598-.037-.029-.708-.015.094-.073dpph自由基.785-.405.156.211-.059-.037.142总酚.874-.082.264.214-.079.072.085单宁.747-.069.372-.076-.227-.150.266葡萄总黄酮.738-.215.320.274-.047.024.262白藜芦醇.110-.19

21、0-.729.078-.226.140.434总糖.203.828.055.263.092.246.049还原糖.008.778-.003.132.140.101-.060可溶性固体.186.827.224.150.106.175.041ph.310-.264-.151.695.137.324-.218可滴定酸-.375.488.543-.006-.367-.234.227固酸比.438-.072-.401-.002.539.364-.128干物质含量.304.898.088.095.090-.012.093果穗质量-.316-.463.323.071.582.036.172百粒质量-.532

22、-.346.552.082.236.114.156果梗比.579-.153-.174-.205-.335-.204-.309出汁率.556-.121.352.153-.071.221.159果皮质量-.288-.178.677-.100.332-.075.214果皮颜色-.393.036-.674.017.041.167.480上图为27个指标与7个因子之间的相关系数表。通过spss分析,即将27个指标精简为7个主成分。从图上可以看出,不同的理性指标与各因子的相关系数不相同。例如:将红葡萄样品1的各指标乘以图表上的相关系数,求到的是红葡萄样品1与因子1的相关系数。红葡萄样品1表达式为:用上面求

23、的y值与7个主成分的贡献率、评分数值来求综合数值z。综合评价方程如下:z1=+b1z2=+b2zm=+bm得到27个葡萄样品的得分红葡萄综合指数红葡萄综合指数红葡萄综合指数葡萄样品11-2.763葡萄样品12-0.47983葡萄样品190.345305葡萄样品7-1.54231葡萄样品16-0.4546949葡萄样品50.639452葡萄样品18-1.8789葡萄样品4-0.24562葡萄样品140.65257葡萄样品15-1.562葡萄样品27-0.15653葡萄样品201.215429葡萄样品25-1.1879葡萄样品1-0.06426葡萄样品21.24568葡萄样品10-1.52562葡

24、萄样品260.16594葡萄样品171.34782葡萄样品6-0.46305葡萄样品220.2456509葡萄样品31.47葡萄样品13-0.7834葡萄样品210.25496葡萄样品232.2205葡萄样品8-0.7807葡萄样品240.33742葡萄样品92.36根据以上图表中的数据,可对葡萄样品进行分类,我们将它分为四类:第一类:得分大于2, 9、23。第二类:得分21, 3、17、2、20。 第三类:得分10, 14、5、19。第四类:得分小于-2, 10、25、15、18、7、11。 酿酒白葡萄的主成分分析法如上:可提取出主要成分为9种:解说变异量成份初始特征值平方和负荷量萃取总和變

25、異數的%积累%总和變異數的%积累%15.72120.43120.4315.72120.43120.43124.66016.64437.0754.66016.64437.07532.83710.13247.2082.83710.13247.20842.0797.42454.6312.0797.42454.63151.8856.73261.3631.8856.73261.36361.6525.90267.2651.6525.90267.26571.4985.34972.6141.4985.34972.61481.2534.47577.0891.2534.47577.08991.0893.89080

26、.9791.0893.89080.979同时,还可以得到成分矩阵表,如下:成分矩阵成份123456789氨基酸总量.547.281.091.535.008.111.067.155.062蛋白质.071.714-.002-.312.085-.208-.278.058-.051vc含量-.338-.224-.475-.337.149.360.376.031.063花色苷-.249-.449.381.290.027.213.125-.503.150酒石酸.458-.384.157.229.284.505.156.303.066苹果酸.034.414.017.602.382.258-.249.014-

27、.199柠檬酸.268.028.334.065.181.418-.421.014.108多酚氧化酶活力-.340-.482.132-.192-.149.288-.370-.269-.080褐变度.151.141-.162-.603.390-.038-.361.200.213dpph自由基.271.468-.298-.119-.230.135.337-.056.070总酚-.085.855.255-.140.175.192.190-.061-.133单宁.384.534-.043-.126-.214.216.317-.326-.187葡萄总黄酮-.153.848.313-.047.056.190

28、.201-.166-.069白藜芦醇(mg/kg).091.157.114.376.301-.560.227-.030.440黄酮醇 .250.481.332-.363.440.198-.031-.046.301总糖.763-.018-.251.021-.305.006-.082.156.007还原糖g/l.713.120-.205.162-.179-.180-.301-.192.139可溶性固形物.842-.091-.141-.034-.310.265-.038.143.038值.420-.208.415-.122-.060-.168.404.448-.231可滴定酸-.241.423-.7

29、56.279-.011.117-.056.005.037固酸比.372-.379.747-.206-.037-.033.008.065-.007干物质含量.863.068-.055.156-.020-.066-.136-.241-.035果穗质量-.654.391.267.222-.018-.212.024.123.167白粒质量-.538.149-.202-.072-.371.222-.066.211.383果梗比-.099-.547-.336.119.403.186.231-.009.244出汁率-.631-.016-.136.209.237-.001-.173.260-.484果皮质量-

30、.316.411.261.222-.420.257-.092.387.211果皮颜色.597-.012-.397-.056.495-.071.077.049-.110我们可用求红葡萄等级的方法求取白葡萄的y的数值,带入下面方程:z1=+b1z2=+b2zm=+bm得到28个白葡萄样品的分值,如下:白葡萄得分白葡萄得分白葡萄得分葡萄样品16-3.552葡萄样品19-0.48803葡萄样品10.8696葡萄样品11-2.398葡萄样品240.0924葡萄样品271.015葡萄样品8-2.3908葡萄样品30.2592葡萄样品211.0247葡萄样品12-2.082葡萄样品150.2295葡萄样品1

31、01.077葡萄样品7-1.675葡萄样品40.2075葡萄样品281.216葡萄样品14-1.043葡萄样品60.2491葡萄样品91.4358葡萄样品13-0.859葡萄样品250.39737葡萄样品51.956葡萄样品18-0.736葡萄样品230.6259葡萄样品222.106葡萄样品2-0.669葡萄样品200.7903葡萄样品172.869葡萄样品26-0.57699通过以上图表对白葡萄样品进行分类。第一类,得分大于2: 17、22。第二类,得分20: 5、9、28、10、21、27、1。第三类,得分0-2: 26、2、18、13、14、7。第四类,得分小于-2: 12、8、11、

32、16。在这一题中,关于y值的系数矩阵(红葡萄,白葡萄)见附录2。问题3:在这个问题中,我们要分析出酿酒葡萄与葡萄酒的理化指标之间的关系,根据问题二中的结论找出影响酿酒葡萄质量的主要影响因素,和影响葡萄酒的主要因素,两者列入同一表中在spss中求各个理化指标之间的相关矩阵,得到下表为红葡萄酒与酿酒葡萄之间的相关矩阵:相关矩阵花色苷单宁总酚酒总黄酮白藜芦醇(mg/l)dpph色泽总酚花色苷总糖干物质含量可溶性固体白藜芦醇褐变度果穗质量酒石酸皮颜色相關花色苷1.000.744.765.664.124.676-.930.613.923.052.230.190-.035.767-.104.034-.38

33、7单宁.7441.000.921.837.331.915-.726.817.720.320.415.410.049.445-.267.281-.373总酚.765.9211.000.904.486.953-.759.875.774.193.296.236.076.459-.184.271-.349酒总黄酮.664.837.9041.000.399.926-.668.883.709.193.245.248.047.443-.237.157-.343白藜芦醇(mg/l).124.331.486.3991.000.528-.081.459.200.155.076.007.014-.095.076.2

34、18-.254dpph.676.915.953.926.5281.000-.668.874.671.265.330.313.073.381-.196.237-.350色泽-.930-.726-.759-.668-.081-.6681.000-.649-.924-.036-.176-.139-.105-.690.116-.013.233总酚.613.817.875.883.459.874-.6491.000.728.163.198.203-.019.361-.235.260-.456花色苷.923.720.774.709.200.671-.924.7281.000.055.221.112-.06

35、0.696-.115.092-.436总糖.052.320.193.193.155.265-.036.163.0551.000.850.865-.077-.066-.317.116-.005干物质含量.230.415.296.245.076.330-.176.198.221.8501.000.817-.141.085-.402.242-.105可溶性固体.190.410.236.248.007.313-.139.203.112.865.8171.000-.258-.020-.288.037-.106白藜芦醇-.035.049.076.047.014.073-.105-.019-.060-.07

36、7-.141-.2581.000.025-.192.166.721褐变度.767.445.459.443-.095.381-.690.361.696-.066.085-.020.0251.000-.268-.063-.251果穗质量-.104-.267-.184-.237.076-.196.116-.235-.115-.317-.402-.288-.192-.2681.000-.014.004酒石酸.034.281.271.157.218.237-.013.260.092.116.242.037.166-.063-.0141.000.041皮颜色-.387-.373-.349-.343-.25

37、4-.350.233-.456-.436-.005-.105-.106.721-.251.004.0411.000上表表明理化指标之间的两两相关关系中,数值越大,相关关系越大,数值越小,相关关系越小。下表为白葡萄酒与酿酒葡萄之间的相关矩阵:相关矩阵单宁总酚酒总黄酮白藜芦醇(mg/l)dpph色泽1可溶性固形物干物质含量总酚葡萄总黄酮固酸比苹果酸果皮颜色酒石酸值果皮质量白藜芦醇(mg/kg)相關单宁1.000.878.423-.162.728.163.349.229.428.495.039.046-.006.182.174.373-.062总酚.8781.000.564-.138.707.198

38、.361.265.547.588.082.122.018.005.121.397.037酒总黄酮.423.5641.000-.031.338-.041-.060.114.744.697.138.467.028-.188-.171.273-.095白藜芦醇(mg/l)-.162-.138-.0311.000-.139.009-.158-.015-.136-.101-.159-.249-.146-.309-.047-.092-.213dpph.728.707.338-.1391.000.079.135.048.422.429-.089-.123.135.099.056.137-.052色泽1.16

39、3.198-.041.009.0791.000.624.670-.146-.154.349-.274.380.294.327-.283.231可溶性固形物.349.361-.060-.158.135.6241.000.666-.184-.230.299-.056.364.455.294-.068-.167干物质含量.229.265.114-.015.048.670.6661.000-.076-.093.206.161.487.277.219-.359.077总酚.428.547.744-.136.422-.146-.184-.0761.000.943-.155.362-.080-.242-.0

40、63.351.056葡萄总黄酮.495.588.697-.101.429-.154-.230-.093.9431.000-.153.328-.208-.260-.138.422.065固酸比.039.082.138-.159-.089.349.299.206-.155-.1531.000-.190-.069.360.516-.111-.031苹果酸.046.122.467-.249-.123-.274-.056.161.362.328-.1901.000.137.180-.303.167.137果皮颜色-.006.018.028-.146.135.380.364.487-.080-.208-.

41、069.1371.000.275.161-.564.138酒石酸.182.005-.188-.309.099.294.455.277-.242-.260.360.180.2751.000.414-.125-.069值.174.121-.171-.047.056.327.294.219-.063-.138.516-.303.161.4141.000-.110.074果皮质量.373.397.273-.092.137-.283-.068-.359.351.422-.111.167-.564-.125-.1101.000-.094白藜芦醇(mg/kg)-.062.037-.095-.213-.052

42、.231-.167.077.056.065-.031.137.138-.069.074-.0941.000上表表明理化指标之间的两两相关关系中,数值越大,相关关系越大,数值越小,相关关系越小。因此,上面两个相关矩阵图中显示的数据,我们可以认为就是酿酒葡萄与葡萄酒之间的联系。问题4:根据题目中的附录一,我们可以确定影响葡萄酒的评价的因素有:外观分析、香气分析、口感分析、平衡/评价。这些因素决定着葡萄酒的澄清度,色调,纯正度,浓度,质量,持久性,度量等。我们可作以下结构图: 葡萄酒的评分外观分析香气分析口感分析平衡/评价澄清度色调纯正度浓度质量纯正度浓度持久性度量我们根据以上结构,在附录中找到影响

43、各种理化指标的主要成分为:设单宁,总酚,酒总黄酮,白藜芦醇(mgl),dpph,色泽1,可溶性固形物,干物质含量,葡萄总黄酮,固酸比,苹果酸,果皮颜色,酒石酸,值,果皮质量,白藜芦醇(mgkg)分别为x1,x2,x3,xi, y为质量均值。建立多元线性回归模型:其中,为y的估计值或预测值,a为截距(常数项),bi为偏回归系数再用spss软件计算出结果:红葡萄酒的数据为:模式摘要b模式rr 平方調過後的 r 平方估計的標準誤1.940a.884.6662.2998a. 預測變數:(常數), 皮颜色, 果穗质量, 酒石酸, 色泽, 可溶性固体, 白藜芦醇(mg/l), 褐变度, 酒总黄酮, 干物质

44、含量, 白藜芦醇, 总糖, 单宁, 总酚, 花色苷, 总酚, 花色苷, dpphb. 依變數:质量均值r的平方为0.884,证明自变量与因变量之间的拟合度很好。變異數分析b模式平方和自由度平均平方和f 檢定顯著性1迴歸363.8341721.4024.047.019a殘差47.60195.289總和411.43426a. 預測變數:(常數), 皮颜色, 果穗质量, 酒石酸, 色泽, 可溶性固体, 白藜芦醇(mg/l), 褐变度, 酒总黄酮, 干物质含量, 白藜芦醇, 总糖, 单宁, 总酚, 花色苷, 总酚, 花色苷, dpphb. 依變數:质量均值显著性0.0190.05,证明显著性高。係數a

45、模式未標準化係數標準化係數t顯著性b 之估計值標準誤beta 分配1(常數)89.30816.4015.445.000花色苷-.002.011-.111-.175.865单宁1.727.6601.2612.617.028总酚-1.615.982-1.025-1.645.134酒总黄酮.619.597.4641.036.327白藜芦醇(mg/l).407.305.2961.334.215dpph-14.26522.340-.457-.639.539色泽-.208.220-.514-.950.367总酚.576.262.9592.198.056花色苷-.043.030-.974-1.437.185总糖.062.062.3581.001.343干物质含量.278.558.173.498.631可溶性固体-.186.094-.897-1.976.080白藜芦醇-.339.217-.467-1.565.152褐变度.001.003.073.306.767果穗质量.009.004.3742.166.058酒石酸.069.197.056.352.733皮颜色.1481.110.043.133.897a. 依變數:质量均值根据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论