版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2016年湖北省随州市广水市中考数学模拟试卷一、单项选择题(本大题共10小题,每小题3分,共30分)1下列运算正确的是()A31=3B =±3C(ab2)3=a3b6Da6÷a2=a32估计的值()A在2到3之间B在3到4之间C在4到5之间D在5到6之间3下列几何体的主视图既是中心对称图形又是轴对称图形的是()ABCD4若三角形的两边长分别为6cm,9cm,则其第三边的长可能为()A2cmB3cmC7cmD16cm5今年,我省启动了“关爱留守儿童工程”某村小为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,1
2、7,18,20对于这组数据,下列说法错误的是()A平均数是15B众数是10C中位数是17D方差是6已知ab,下列式子不成立的是()Aa+1b+1B3a3bC abD如果c0,那么7如图,在等腰直角三角形ABC中,C=90°,AC=6,D是AC上一点,若tanDBA=,则AD的长是()AB2C1D28如图,已知ABCD中,AEBC于点E,以点B为中心,取旋转角等于ABC,把BAE顺时针旋转,得到BAE,连接DA若ADC=60°,ADA=50°,则DAE的大小为()A130°B150°C160°D170°9如图,过点C(1,2)
3、分别作x轴、y轴的平行线,交直线y=x+6于A、B两点,若反比例函数y=(x0)的图象与ABC有公共点,则k的取值范围是()A2k9B2k8C2k5D5k810如图,抛物线y=x2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个命题:当x0时,y0;若a=1,则b=4;抛物线上有两点P(x1,y1)和Q(x2,y2),若x11x2,且x1+x22,则y1y2;点C关于抛物线对称轴的对称点为E,点G,F分别在x轴和y轴上,当m=2时,四边形EDFG周长的最小值为6其中真命题的序号是()ABCD二、填空题(本大题共6小题,每小题3分,共18分)11若2x
4、mny2与3x4y2m+n是同类项,则m3n的立方根是12如图,某建筑物BC上有一旗杆AB,从与BC相距38m的D处观测旗杆顶部A的仰角为50°,观测旗杆底部B的仰角为45°,则旗杆的高度约为m(结果精确到0.1m,参考数据:sin50°0.77,cos50°0.64,tan50°1.19)13已知m是整数,且一次函数y=(m+4)x+m+2的图象不过第二象限,则m=14关于x的方程a(x+m)2+b=0的解是x1=2,x2=1,(a,m,b均为常数,a0),则方程a(x+m+2)2+b=0的解是15如图,在圆心角为90°的扇形OAB
5、中,半径OA=2cm,C为的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为cm216如图,已知正方形ABCD的边长为2,E是边BC上的动点,BFAE交CD于点F,垂足为G,连结CG下列说法:AGGE;AE=BF;点G运动的路径长为;CG的最小值为1其中正确的说法是(把你认为正确的说法的序号都填上)三、解答题(本大题共9小题,共72分)17先化简,再求值:()÷,其中a,b满足+|b|=018如图,一块余料ABCD,ADBC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于GH的长为半径画弧,两弧在ABC内部相交于点O
6、,画射线BO,交AD于点E(1)求证:AB=AE;(2)若A=100°,求EBC的度数19甲、乙两人准备整理一批新到的图书,甲单独整理需要40分钟完工;若甲、乙共同整理20分钟后,乙需再单独整理30分钟才能完工问乙单独整理这批图书需要多少分钟完工?20下表中,y是x的一次函数 x2 1 2 5 y 631215(1)求该函数的表达式,并补全表格;(2)已知该函数图象上一点M(1,3)也在反比例函数y=图象上,求这两个函数图象的另一交点N的坐标21901班的全体同学根据自己的兴趣爱好参加了六个学生社团(2015黄冈)已知:如图,在ABC中,AB=AC,以AC为直径的O交AB于点M,交B
7、C于点N,连接AN,过点C的切线交AB的延长线于点P(1)求证:BCP=BAN(2)求证: =23我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(
8、元)最大?最大利润是多少?24定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;(2)如图2,在圆内接四边形ABCD中,AB是O的直径,AC=BD求证:四边形ABCD是对等四边形;(3)如图3,在RtPBC中,PCB=90°,BC=11,tanPBC=,点A在BP边上,且AB=13用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD的长25抛物线y=x2+bx+c经过点A、B、C,已知A
9、(1,0),C(0,3)(1)求抛物线的解析式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当BDC的面积最大时,求点P的坐标;(3)如图2,抛物线顶点为E,EFx轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若MNC=90°,请指出实数m的变化范围,并说明理由2016年湖北省随州市广水市中考数学模拟试卷参考答案与试题解析一、单项选择题(本大题共10小题,每小题3分,共30分)1下列运算正确的是()A31=3B =±3C(ab2)3=a3b6Da6÷a2=a3【考点】同底数幂的除法;算术平方根;幂的乘方与积的乘方;负整数指数幂
10、【专题】计算题【分析】运用负整数指数幂的法则运算,开平方的方法,同底数幂的除法以及幂的乘方计算【解答】解:A、31=3,故A选项错误;B、=3±3,故B选项错误;C、(ab2)3=a3b6,故C选项正确;D、a6÷a2=a4a3,故D选项错误故选:C【点评】此题考查了负整数指数幂的运算,开平方,同底数幂的除法以及幂的乘方等知识,解题要注意细心2估计的值()A在2到3之间B在3到4之间C在4到5之间D在5到6之间【考点】估算无理数的大小【专题】计算题【分析】先确定的平方的范围,进而估算的值的范围【解答】解:9=1116,故34;故选B【点评】本题主要考查了无理数的估算,解题关
11、键是确定无理数的整数部分即可解决问题,属于基础题3下列几何体的主视图既是中心对称图形又是轴对称图形的是()ABCD【考点】中心对称图形;轴对称图形;简单几何体的三视图【分析】先判断主视图,再根据轴对称图形与中心对称图形的概念求解【解答】解:A、主视图是等腰三角形,是轴对称图形,不是中心对称图形,故错误;B、主视图是等腰三角形,是轴对称图形,不是中心对称图形,故错误;C、主视图是等腰梯形,是轴对称图形,不是中心对称图形,故错误;D、主视图是矩形,是轴对称图形,也是中心对称图形,故正确故选:D【点评】掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;
12、中心对称图形是要寻找对称中心,旋转180度后与原图重合4若三角形的两边长分别为6cm,9cm,则其第三边的长可能为()A2cmB3cmC7cmD16cm【考点】三角形三边关系【专题】应用题【分析】已知三角形的两边长分别为6cm和9cm,根据在三角形中任意两边之和第三边,或者任意两边之差第三边,即可求出第三边长的范围【解答】解:设第三边长为xcm由三角形三边关系定理得96x9+6,解得3x15故选C【点评】本题考查了三角形三边关系定理的应用关键是根据三角形三边关系定理列出不等式组,然后解不等式组即可5今年,我省启动了“关爱留守儿童工程”某村小为了了解各年级留守儿童的数量,对一到六年级留守儿童数量
13、进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20对于这组数据,下列说法错误的是()A平均数是15B众数是10C中位数是17D方差是【考点】方差;加权平均数;中位数;众数【分析】根据方差、众数、平均数和中位数的计算公式和定义分别进行解答即可【解答】解:平均数是:(10+15+10+17+18+20)÷6=15;10出现了2次,出现的次数最多,则众数是10;把这组数据从小到大排列为10,10,15,17,18,20,最中间的数是(15+17)÷2=16,则中位数是16;方差是: 2(1015)2+(1515)2+(1715)2+(1815)2+(2
14、015)2= =则下列说法错误的是C故选:C【点评】此题考查了方差、众数、平均数和中位数的定义用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数平均数是指在一组数据中所有数据之和再除以数据的个数一般地设n个数据,x1,x2,xn的平均数为,则方差S2= (x1)2+(x2)2+(xn)26已知ab,下列式子不成立的是()Aa+1b+1B3a3bC abD如果c0,那么【考点】不等式的性质【分析】利用不等式的性
15、质知:不等式两边同时乘以一个正数不等号方向不变,同乘以或除以一个负数不等号方向改变【解答】解:A、不等式两边同时加上1,不等号方向不变,故本选项正确,不符合题意;B、不等式两边同时乘以3,不等号方向不变,故本选项正确,不符合题意;C、不等式两边同时乘以,不等号方向改变,故本选项正确,不符合题意;D、不等式两边同时乘以负数c,不等号方向改变,故本选项错误,符合题意故选D【点评】本题考查了不等式的性质,解题的关键是牢记不等式的性质,特别是在不等式的两边同时乘以或除以一个负数时,不等号方向改变7如图,在等腰直角三角形ABC中,C=90°,AC=6,D是AC上一点,若tanDBA=,则AD的
16、长是()AB2C1D2【考点】解直角三角形【专题】计算题【分析】作DEAB,构造直角三角形,根据角的正弦值与三角形边的关系,可求出各边的长【解答】解:作DEAB于E点tanDBA=,BE=5DE,ABC为等腰直角三角形,A=45°,AE=DEBE=5AE,又AC=6,AB=6AE+BE=5AE+AE=6,AE=,在等腰直角ADE中,由勾股定理,得AD=AE=2故选B【点评】此题的关键是作辅助线,构造直角三角形,运用三角函数的定义建立关系式然后求解8如图,已知ABCD中,AEBC于点E,以点B为中心,取旋转角等于ABC,把BAE顺时针旋转,得到BAE,连接DA若ADC=60°
17、,ADA=50°,则DAE的大小为()A130°B150°C160°D170°【考点】旋转的性质;平行四边形的性质【分析】根据平行四边形对角相等、邻角互补,得ABC=60°,DCB=120°,再由ADC=10°,可运用三角形外角求出DAB=130°,再根据旋转的性质得到BAE=BAE=30°,从而得到答案【解答】解:四边形ABCD是平行四边形,ADC=60°,ABC=60°,DCB=120°,ADA=50°,ADC=10°,DAB=130
18、6;,AEBC于点E,BAE=30°,BAE顺时针旋转,得到BAE,BAE=BAE=30°,DAE=DAB+BAE=160°故选:C【点评】本题主要考查了平行四边形的性质,三角形内角和定理及推论,旋转的性质,此题难度不大,关键是能综合运用以上知识点求出DAB和BAE9如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=x+6于A、B两点,若反比例函数y=(x0)的图象与ABC有公共点,则k的取值范围是()A2k9B2k8C2k5D5k8【考点】反比例函数综合题【专题】综合题;压轴题【分析】先求出点A、B的坐标,根据反比例函数系数的几何意义可知,当反比例函数图
19、象与ABC相交于点C时k的取值最小,当与线段AB相交时,k能取到最大值,根据直线y=x+6,设交点为(x,x+6)时k值最大,然后列式利用二次函数的最值问题解答即可得解【解答】解:点C(1,2),BCy轴,ACx轴,当x=1时,y=1+6=5,当y=2时,x+6=2,解得x=4,点A、B的坐标分别为A(4,2),B(1,5),根据反比例函数系数的几何意义,当反比例函数与点C相交时,k=1×2=2最小,设反比例函数与线段AB相交于点(x,x+6)时k值最大,则k=x(x+6)=x2+6x=(x3)2+9,1x4,当x=3时,k值最大,此时交点坐标为(3,3),因此,k的取值范围是2k9
20、故选:A【点评】本题考查了反比例函数系数的几何意义,二次函数的最值问题,本题看似简单但不容易入手解答,判断出最大最小值的取值情况并考虑到用二次函数的最值问题解答是解题的关键10如图,抛物线y=x2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个命题:当x0时,y0;若a=1,则b=4;抛物线上有两点P(x1,y1)和Q(x2,y2),若x11x2,且x1+x22,则y1y2;点C关于抛物线对称轴的对称点为E,点G,F分别在x轴和y轴上,当m=2时,四边形EDFG周长的最小值为6其中真命题的序号是()ABCD【考点】二次函数综合题【专题】压轴题【分析】
21、根据二次函数所过象限,判断出y的符号;根据A、B关于对称轴对称,求出b的值;根据1,得到x11x2,从而得到Q点距离对称轴较远,进而判断出y1y2;作D关于y轴的对称点D,E关于x轴的对称点E,连接DE,DE与DE的和即为四边形EDFG周长的最小值求出D、E、D、E的坐标即可解答【解答】解:当x0时,函数图象过一四象限,当0xb时,y0;当xb时,y0,故本选项错误;二次函数对称轴为x=1,当a=1时有=1,解得b=3,故本选项错误;x1+x22,1,又x111x21,Q点距离对称轴较远,y1y2,故本选项正确;如图,作D关于y轴的对称点D,E关于x轴的对称点E,连接DE,DE与DE的和即为四
22、边形EDFG周长的最小值当m=2时,二次函数为y=x2+2x+3,顶点纵坐标为y=1+2+3=4,D为(1,4),则D为(1,4);C点坐标为C(0,3);则E为(2,3),E为(2,3);则DE=;DE=;四边形EDFG周长的最小值为+,故本选项错误故选C【点评】本题考查了二次函数综合题,涉及函数与不等式的关系、二次函数的对称轴、函数图象上点的坐标特征、轴对称最短路径问题等,值得关注二、填空题(本大题共6小题,每小题3分,共18分)11若2xmny2与3x4y2m+n是同类项,则m3n的立方根是2【考点】立方根;合并同类项;解二元一次方程组【专题】计算题【分析】根据同类项的定义可以得到m,n
23、的值,继而求出m3n的立方根【解答】解:若2xmny2与3x4y2m+n是同类项,解方程得:m3n=23×(2)=88的立方根是2故答案为:2【点评】本题考查了同类项的概念以及立方根的求法,解体的关键是根据定义求出对应m、n的值12如图,某建筑物BC上有一旗杆AB,从与BC相距38m的D处观测旗杆顶部A的仰角为50°,观测旗杆底部B的仰角为45°,则旗杆的高度约为7.2m(结果精确到0.1m,参考数据:sin50°0.77,cos50°0.64,tan50°1.19)【考点】解直角三角形的应用-仰角俯角问题【分析】根据题意分别在两个直
24、角三角形中求得AF和BF的长后求差即可得到旗杆的高度【解答】解:根据题意得:EFAC,CDFE,四边形CDEF是矩形,已知底部B的仰角为45°即BEF=45°,EBF=45°,CD=EF=FB=38,在RtAEF中,AF=EFtan50°=38×1.1945.22AB=AFBF=45.22387.2,旗杆的高约为7米故答案为:7.2【点评】此题考查的知识点是解直角三角形的应用,解题的关键是把实际问题转化为解直角三角形问题,先得到等腰直角三角形,再根据三角函数求解13已知m是整数,且一次函数y=(m+4)x+m+2的图象不过第二象限,则m=3或2
25、【考点】一次函数的性质;一次函数的定义【分析】由于一次函数y=(m+4)x+m+2的图象不过第二象限,则得到,然后解不等式即可m的值【解答】解:一次函数y=(m+4)x+m+2的图象不过第二象限,解得4m2,而m是整数,则m=3或2故填空答案:3或2【点评】此题首先根据一次函数的性质,利用已知条件列出关于m的不等式组求解,然后取其整数即可解决问题14关于x的方程a(x+m)2+b=0的解是x1=2,x2=1,(a,m,b均为常数,a0),则方程a(x+m+2)2+b=0的解是x3=4,x4=1【考点】一元二次方程的解【专题】计算题;压轴题【分析】把后面一个方程中的x+2看作整体,相当于前面一个
26、方程中的x求解【解答】解:关于x的方程a(x+m)2+b=0的解是x1=2,x2=1,(a,m,b均为常数,a0),方程a(x+m+2)2+b=0变形为a(x+2)+m2+b=0,即此方程中x+2=2或x+2=1,解得x=4或x=1故答案为:x3=4,x4=1【点评】此题主要考查了方程解的定义注意由两个方程的特点进行简便计算15如图,在圆心角为90°的扇形OAB中,半径OA=2cm,C为的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为(+)cm2【考点】扇形面积的计算【专题】压轴题【分析】连结OC,过C点作CFOA于F,先根据空白图形ACD的面积=扇形OAC的面积三角形O
27、CD的面积,求得空白图形ACD的面积,再根据三角形面积公式得到三角形ODE的面积,再根据图中阴影部分的面积=扇形OAB的面积空白图形ACD的面积三角形ODE的面积,列式计算即可求解【解答】解:连结OC,过C点作CFOA于F,半径OA=2cm,C为的中点,D、E分别是OA、OB的中点,OD=OE=1cm,OC=2cm,AOC=45°,CF=,空白图形ACD的面积=扇形OAC的面积三角形OCD的面积=×=(cm2)三角形ODE的面积=OD×OE=(cm2),图中阴影部分的面积=扇形OAB的面积空白图形ACD的面积三角形ODE的面积=()=+(cm2)故图中阴影部分的面
28、积为(+)cm2故答案为:(+)【点评】考查了扇形面积的计算,本题难点是得到空白图形ACD的面积,关键是理解图中阴影部分的面积=扇形OAB的面积空白图形ACD的面积三角形ODE的面积16如图,已知正方形ABCD的边长为2,E是边BC上的动点,BFAE交CD于点F,垂足为G,连结CG下列说法:AGGE;AE=BF;点G运动的路径长为;CG的最小值为1其中正确的说法是(把你认为正确的说法的序号都填上)【考点】四边形综合题【专题】压轴题【分析】根据正方形对角线的性质可得出当E移动到与C重合时,F点和D点重合,此时G点为AC中点,故错误;求得BAE=CBF,根据正方形的性质可得AB=BC,ABC=C=
29、90°,然后利用“角角边”证明ABE和BCF全等,根据全等三角形对应角相等可得AE=BF,判断出正确;根据题意,G点的轨迹是以AB中点O为圆心,AO为半径的圆弧,然后求出弧的长度,判断出错误;由于OC和OG的长度是一定的,因此当O、G、C在同一条直线上时,CG取最小值,根据勾股定理求出最小CG长度【解答】解:在正方形ABCD中,BFAE,AGB保持90°不变,G点的轨迹是以AB中点O为圆心,AO为半径的圆弧,当E移动到与C重合时,F点和D点重合,此时G点为AC中点,AG=GE,故错误;BFAE,AEB+CBF=90°,AEB+BAE=90°,BAE=CB
30、F,在ABE和BCF中,ABEBCF(AAS),故正确;当E点运动到C点时停止,点G运动的轨迹为圆,圆弧的长=×2=,故错误;由于OC和OG的长度是一定的,因此当O、G、C在同一条直线上时,CG取最小值,OC=,CG的最小值为OCOG=1,故正确;综上所述,正确的结论有故答案为【点评】本题考查了正方形的性质,全等三角形的判定与性质,弧长的计算,勾股定理的应用,熟记性质并求出ABE和BCF全等是解题的关键,用阿拉伯数字加弧线表示角更形象直观三、解答题(本大题共9小题,共72分)17先化简,再求值:()÷,其中a,b满足+|b|=0【考点】分式的化简求值;非负数的性质:绝对值;
31、非负数的性质:算术平方根【专题】计算题【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值【解答】解:原式=,+|b|=0,解得:a=1,b=,则原式=【点评】此题考查了分式的化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键18如图,一块余料ABCD,ADBC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于GH的长为半径画弧,两弧在ABC内部相交于点O,画射线BO,交AD于点E(1)求证:AB=AE;(2)若A=100°,
32、求EBC的度数【考点】作图基本作图;等腰三角形的判定与性质【分析】(1)根据平行线的性质,可得AEB=EBC,根据角平分线的性质,可得EBC=ABE,根据等腰三角形的判定,可得答案;(2)根据三角形的内角和定理,可得AEB,根据平行线的性质,可得答案【解答】(1)证明:ADBC,AEB=EBC由BE是ABC的角平分线,EBC=ABE,AEB=ABE,AB=AE;(2)由A=100°,ABE=AEB,得ABE=AEB=40°由ADBC,得EBC=AEB=40°【点评】本题考查了等腰三角形的判定,利用了平行线的性质,角平分线的性质,等腰三角形的判定19甲、乙两人准备整
33、理一批新到的图书,甲单独整理需要40分钟完工;若甲、乙共同整理20分钟后,乙需再单独整理30分钟才能完工问乙单独整理这批图书需要多少分钟完工?【考点】分式方程的应用【专题】工程问题【分析】将总的工作量看作单位1,根据本工作分两段时间完成列出分式方程解之即可【解答】解:设乙单独整理x分钟完工,根据题意得:=1,解得x=100,经检验x=100是原分式方程的解答:乙单独整理100分钟完工【点评】本题考查了分式方程的应用分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间20下表中,y是x的一次函数 x2 1 24 5
34、y 6361215(1)求该函数的表达式,并补全表格;(2)已知该函数图象上一点M(1,3)也在反比例函数y=图象上,求这两个函数图象的另一交点N的坐标【考点】反比例函数与一次函数的交点问题;待定系数法求一次函数解析式【专题】计算题【分析】(1)设y=kx+b,将点(2,6)、(5,15)代入可得函数解析式,也可补全表格;(2)将点M的坐标代入,可得m的值,联立一次函数及反比例函数解析式可得另一交点坐标【解答】解:(1)设该一次函数为y=kx+b(k0),当x=2时,y=6,当x=1时,y=3,解得:,一次函数的表达式为:y=3x,当x=2时,y=6;当y=12时,x=4补全表格如题中所示(2
35、)点M(1,3)在反比例函数y=上(m0),3=,m=3,反比例函数解析式为:y=,联立可得,解得:或,另一交点坐标为(1,3)【点评】本题考查了反比例函数与一次函数的交点问题,解答本题的关键是熟练待定系数法的运用,难度一般21901班的全体同学根据自己的兴趣爱好参加了六个学生社团(2015黄冈)已知:如图,在ABC中,AB=AC,以AC为直径的O交AB于点M,交BC于点N,连接AN,过点C的切线交AB的延长线于点P(1)求证:BCP=BAN(2)求证: =【考点】切线的性质;相似三角形的判定与性质【专题】证明题【分析】(1)由AC为O直径,得到NAC+ACN=90°,由AB=AC,
36、得到BAN=CAN,根据PC是O的切线,得到ACN+PCB=90°,于是得到结论(2)由等腰三角形的性质得到ABC=ACB,根据圆内接四边形的性质得到PBC=AMN,证出BPCMNA,即可得到结论【解答】(1)证明:AC为O直径,ANC=90°,NAC+ACN=90°,AB=AC,BAN=CAN,PC是O的切线,ACP=90°,ACN+PCB=90°,BCP=CAN,BCP=BAN;(2)AB=AC,ABC=ACB,PBC+ABC=AMN+ACN=180°,PBC=AMN,由(1)知BCP=BAN,BPCMNA,【点评】本题考查了切线
37、的性质,等腰三角形的性质,圆周角定理,相似三角形的判定和性质,圆内接四边形的性质,解此题的关键是熟练掌握定理23我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所
38、获得的利润w(元)最大?最大利润是多少?【考点】二次函数的应用【专题】销售问题【分析】(1)根据题中条件销售价每降低10元,月销售量就可多售出50台,即可列出函数关系式;根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值(2)用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w;【解答】解:(1)根据题中条件销售价每降低10元,月销售量就可多售出50台,则月销售量y(台)与售价x(元/台)之间的函数关系式:y=200+50×,化简得:y=5x+2200;供货商规定这种空气净化器售价不能低于300元/台,代理销售商
39、每月要完成不低于450台,则,解得:300x350y与x之间的函数关系式为:y=5x+2200(300x350);(2)W=(x200)(5x+2200),整理得:W=5(x320)2+72000x=320在300x350内,当x=320时,最大值为72000,即售价定为320元/台时,商场每月销售这种空气净化器所获得的利润w最大,最大利润是72000元【点评】本题主要考查对于一次函数的应用和掌握,而且还应用到将函数变形求函数极值的知识24定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上
40、,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;(2)如图2,在圆内接四边形ABCD中,AB是O的直径,AC=BD求证:四边形ABCD是对等四边形;(3)如图3,在RtPBC中,PCB=90°,BC=11,tanPBC=,点A在BP边上,且AB=13用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD的长【考点】四边形综合题【专题】新定义【分析】(1)根据对等四边形的定义,进行画图即可;(2)连接AC,BD,证明RtADBRtACB,得到AD=BC,又AB是O的直径,所以ABCD,即可解答;(3)根据对等四边形的定义,分两种情况:若CD=AB,此时点D在D1的位置,CD1=AB=13;若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11;利用勾股定理和矩形的性质,求出相关相关线段的长度,即可解答【解答】解:(1)如图1所示(画2个即可)(2)如图2,连接AC,BD,AB是O的直径,ADB=ACB=90°,在RtADB和RtACB中,RtADBRtACB,AD=BC,又AB是O的直径,ABCD,四边形ABCD是对等四边形(3)如图3,点D的位置如图所示:若CD=AB,此时点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沈阳理工大学《环境设计》2023-2024学年第一学期期末试卷
- 全国统考2024高考历史一轮复习第九单元20世纪世界经济体制的创新与世界经济全球化趋势第27讲古代中国的科学技术与文学艺术课时作业含解析新人教版
- 煤矿应急应急救援
- 2024年合作小车客运从业资格证考试
- 2024年毕节道路客运从业资格证考试
- 美食广场租赁管理合同附件
- 2024标准房屋租赁合同书(常用版)
- 2024二手车分期付款合同
- 卫生部临床检验中心详解
- 2024建筑工程钢筋承包合同书格式
- 认识他人课件教学课件
- 2024年国家公务员考试行测(副省级)真题及答案解析
- 江苏省南通市2024-2025学年八年级上学期11月期中数学试题(无答案)
- 家装瓷砖铺贴专项施工协议范本
- 天津市2024年七年级上学期数学期中考试试卷【附答案】
- 中国汽车刹车盘行业投资分析、市场运行态势研究报告-智研咨询发布
- “双减”政策下作业设计策略4篇
- 普外科重点专科评审工作汇报
- 2024-2025学年初中音乐九年级上册湘艺版(2024)教学设计合集
- 期中阶段测试卷(试题)2024-2025学年统编版语文五年级上册
- 2023年中央机关遴选笔试真题及解析(B卷)
评论
0/150
提交评论