




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Lecture 2:Crystallographic OrientationTheory Physical Based Plastic DeformationJianguo TXinming ZProceeding Materials: A solid composed of atoms, molecules arranged in a pattern periodic in three dimensions Three dimensional array of points (lattice points), each of which has identical surroundings.
2、 Mathematically Lattices can extend to infinityProceeding Materials: Defined by three independent translation vectors a,b and c in a right-handed sense. Different translations of the form will reproduce the whole structure. is a unit cell which contains only one atom per cell. 过晶胞角点(原点)的三轴 为 ,他们及其夹角
3、,共同为点阵参数。n1a n2b n3c , ,a b c Proceeding Materials以原点为起点画一条与拟标定方向平行的线 将uvw简化为最小整数,并加括起来。 反方向的晶向指数可以在数字上面加负号来表示Directions of a form: are the directions represented by symmetry may all be represented by ruavbwc111111 11 1111Proceeding Materials Planes can be represented by their normal vectors Mathema
4、tically this is the same as taking the reciprocal of the intercept to the three axes or 1/h,1/k,1/l If the axial lengths are a, b, c, then the planes make the intercepts of a/h, b/k, c/l. The miller indices for the plane is (hkl), and the family of planes are hkl.Proceeding Materials Planes parallel
5、 to a given axes will result in Miller indices1/ 0Proceeding Materials1 Introduction1 Introduction()()jijiiikljjllmnmn 11212323() ()klnb b bnn Slip system is often defined with the crystal graphic frame, so for crystal plasticity description between crystal and sample reference is enough.1 Introduct
6、ion1 Introduction1 Introduction1 Introduction1 Introduction Crystallographic orientation The rotation relationship between reference frame and crystal reference: S3 C3 S2 C2 S1 C1 S3 C3 C2 S2 C1 S1 1 IntroductionReference frame: Those directions which coincide with the sample symmetry operators are
7、chosen as axis of sample reference. ND, TD and RD of rolled sheets for example Crystal frame: Often low index crystal directions which coincide with crystal symmetry operators are chosen as axis of crystal frame, cubic-.1 Introduction For Hexagonal Crystal structureAttention : the 3 parameters direc
8、tion/plane are also not based on the orthogonal reference frameWwvutUVvVUu)()2(31)2(311 IntroductionGrain 2a3a1a2e1e2e3a2a1a3Grain I1 IntroductionSCRg Rs1c1s2c2s3c3csijikkljlgg111121312212223233132333SCSCSCRgggRRgggRRgggRcsTg g1 Introduction2 Representation of Crystallographic Orientation The column
9、s represent components of three other unit vectors: Where the Columns are the direction cosines (i.e. hkl or uvw) for the RD, TD and Normal directions in the crystal coordinate system. uvwRDTDND(hkl)111213212223313233ggggggggg2 Representation of Crystallographic Orientation3213cccsMLMKMH3211cccsNWNV
10、NU222LKHM222WVUN31KWLVLUHWHVKUMNMNMN2123sssccc2 Representation of Crystallographic Orientationl 6 parameters are needed for representation of crystallographic orientation: HKL: H*U+K*V+L*W=0l Normalization : H2+K2+L2=M2 U2+V2+W2=N2l Only 3 of the 6 parameters are independent.2 Representation of Crys
11、tallographic Orientation33223323uvwhkluvwhkluvwhklacuvhkddvackddwcaldd12122121221coscossinsincossinsincossinsincoscoscossinsinsincos 2 Representation of Crystallographic OrientationRepresentation of rotation/orientation by three continuous rotation along certain axisBunge RoeKocks010100001Crystale1=
12、Xsample=RDe2=Ysample=TDe3=Zsample=NDSample AxesRDTDe”2e”3=e”12nd positionycrystal=e2f2xcrystal=e1zcrystal=e3=3rd position (final)e1e2f1e3=1st position2 Representation of Crystallographic Orientation2 Representation of Crystallographic OrientationRotation 1 (f f1 1): rotate axes (anticlockwise) about
13、 the (sample) 3 ND axis until Rd perpendicular to ND and C311111cossin0()sincos0001g 2 Representation of Crystallographic OrientationRotation 2 ( ): rotate axes (anticlockwise) about the (rotated) 1 axis 100 axis until ND” coincide with C3cossin0sincos0001)(g2 Representation of Crystallographic Orie
14、ntationRotation 3 (f f2 2): rotate axes (anticlockwise) about the (crystal) 3 001 axis until the two reference frames coincide with each other.1000cossin0sincos)(22222g2 Representation of Crystallographic Orientation1212122121212122121211coscossincossinsinsinsincoscossincoscossinsinsincossinsincosco
15、scoscoscossinsincossincosgggg 2 Representation of Crystallographic Orientation1212,2,gg2 Representation of Crystallographic Orientation2 Representation of Crystallographic Orientation(, ,)sinsincossincos sincoscos cossincos cossincoscoscossinsincossincossinsincoscoscossinsinsingffffffffff Convention
16、1st2nd3rd2nd angleabout axis:Kocks(symmetric)fyBungef1-22f2xMatthiesyRoey2 Representation of Crystallographic Orientation2 Representation of Crystallographic Orientation v = vxs1 + vy s2 + vzs3 = vxc1 + vyc2 + vzc3 zyxzyxvvvvvvg2 Representation of Crystallographic Orientation First rotate axis V to
17、V which coincide with axis 3; Then rotate along V with angle ; Finally rotate V back to V.222222( ,)(1)cos(1 cos)(1 cos)sinsin(1)cos(1 cos)(1 cos)sinsin(1 cos)(1 cos)(1)cossinsinxxyxzxzyyxyyzzyxxyyzzyxzgvv vv vvvvvv vv vvvvv vv vvvvvv2 Representation of Crystallographic Orientation Rodrigues Vector2
18、22123tan, v=+v2vvRv Q123cos,sin,sin,sin2222vvvq2 Representation of Crystallographic Orientation2 Representation of Crystallographic OrientationNSS1P1P2S2S2Definition of pole and its stereo projection2 Representation of Crystallographic Orientation100001010NDNDRD100001ii0012 Representation of Crystal
19、lographic Orientation22 Representation of Crystallographic OrientationRi = (sini cosi) s1 + (sini sini) s2 + (cosi) s3 = (Xi c1 +Yi c2 +Zi c3) / P 222ZYXPiii333231232221131211ZYX1cossinsincossingggggggggPiiiiiRDTDNDHKL2 Representation of Crystallographic Orientation EXAMPLE: Calculate the pole angle
20、s() of pole. (orientation: )(101)1211112102131313161626131cossinsincossiniiiiii = 35.3,i = 215.3 2 Representation of Crystallographic OrientationRi = si = sini cosi c1 + sini sini c2 + cosi c3 g1i = sini cosi;g2i = sini sini;g3i = cosi 1000100013 Misorientation and grain boundaryGBa3a1a2e1e2e3a2a1a3
21、GA3 Misorientation and grain boundarygAgBgCgD3 Misorientation and grain boundaryxzygA-1gBIn terms of orientations:rotate back from position Ato the reference position.Then rotate to position B.Compound (“compose”)the two rotations to arriveat the net rotation betweenthe two grains.Net rotation = gBg
22、A-13 Misorientation and grain boundarygAgBgCgDg=gBgA-1 gAgB-1rrotation axis, common to both crystalsSwitching symmetry:A to B is indistinguishable from B to A3 Misorientation and grain boundary12332311312211cos2(),(),()sintrgggggggrU.F.Kocks ,Texture and anisotropy ,1998;毛卫民,张新明,晶体材料织构定量分析晶体材料织构定量分析
23、,19933 Misorientation and grain boundary Influence of crystal symmetryiiTsym gg R11min cos2iTtrg3 Misorientation and grain boundaryMisorientation is defined as the crystallographic orientation difference between grains at each side of the grain boundary, not the angle of two boundaries.3 Misorientation and grain boundary1n2n同样的取向差,但是不一样3 Misorientation and grain boundary Tilt boundary is a rota
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 烘焙店合伙入股合同范本
- 麻辣烫加盟协议合同范本
- 淘宝怎样签保障协议合同
- 淘宝开店合同协议书模板
- 池州离婚财产分割协议书
- 消防入股合同协议书范本
- 社交电商平台代理协议书
- 物业签订供用水合同范本
- 销售合同终止协议书模板
- 终止荒山承包协议合同书
- 2024年中考二轮物质的转化专项训练
- 2024年陕西投资集团有限公司校园招聘考试试题各版本
- 《团体标准-电能计量箱接插件技术条件》
- 《电力用磷酸铁锂电池通信电源系统技术规范编制说明》
- MOOC 高等数学先修课-西南财经大学 中国大学慕课答案
- YYT 1898-2024 血管内导管导丝 亲水性涂层牢固度试验方法
- 运行人员电气培训课件
- 2024陕西延长石油集团矿业公司所属单位社会招聘笔试参考题库附带答案详解
- 邮政集团社招柜员笔试题
- 直流微电网下垂控制技术研究综述
- 2024年高考数学复习备考策略讲座
评论
0/150
提交评论