抛物线的简单几何性质_第1页
抛物线的简单几何性质_第2页
免费预览已结束,剩余6页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1 抛物线的简单几何性质(45分钟100分)一、选择题(每小题6分,共30分)1. (2013济宁高二检测)设抛物线y2=12x的焦点为F,点P在此抛物线上且横坐标为5,则|PF等于()2. (2013宜春高二检测)抛物线顶点在原点,焦点在y轴上,其上一点P(m, 1)到 焦点的距离为5,则抛物线方程为()B. x2=-8yDx:=-16y3. (2013四川高考)抛物线y2=8x的焦点到直线x-错误!未找到引用源。y=0的 距离是()A. 2错误!未找到引用源。B. 2C.错误!未找到引用源。D. 14. (2013冀州高二检测)设F为抛物线y:=2px(p0)的焦点,A, B, C为该抛物

2、线上 三点,当错误!未找到引用源。错误!未找到引用源。+错误!未找到引用源。二0,且I错误!未找到引用源。1 + 1错误!未找到引用源。1+错误!未找到引用源。1=3时,此抛物线的方程为()A. y=2xCy=6x5.点A是抛物线G:y咯2px (p0)与双曲线 3 错误!未找到引用源。 -错误味找到 引A. x=8yC. x2=16yB. y=4xD. y2=8x-7 -用源。=l(a0,b0)的一条渐近线的交点,若点A到抛物线G的准线的距离为-7 -P,则双曲线c:的离心率等于(A.错误!未找到引用源。二、填空题(每小题8分,共24分)6. (2013安阳高二检测)经过抛物线y二错误!未找

3、到引用源。扌的焦点作直线交抛物线于A(xi, yi),B (x2, y2)两点,若刃+y尸5,则线段AB的长等于_ .7.己知点(-2, 3)与抛物线y:=2px(p0)的焦点的距离是5,则p二_.8. (2013天水高二检测)AB是过C:y2=4x焦点的弦,且AB|=10,则AB中点的横坐标是_三、解答题(9题,10题14分,11题18分)9.若抛物线的顶点在原点, 开口向上,F为焦点,M为准线与y轴的交点,A为抛物 线上一点,且|AM|二错误!未找到引用源。,AF|=3,求此抛物线的标准方程.10.直角AA0B的三个顶点都在抛物线y-2px上,其中直角顶点0为原点,0A所在 直线的方程为尸

4、错误!未找到引用源。x,AA0B的而积为6错误!未找到引用源。, 求该抛物线的方程.11.(能力挑战题)如图,己知直线/:y=2x-4交抛物线y-4x于A, B两点,试在抛物线A0B这段曲线上求一点P,使APAB的面积最大,并求出这个最大面积.)B.错误!未找到引用源。C.错误!未找到引用源。D.错误!未找到引用源。4 答案解析1.【解析】选C.yJl2x中,p二6,由焦半径公式得|PF|=Xp+错误!未找到引用源。二5+错误!未找到引用源。二8.2.【解题指南】运用焦半径公式.【解析】选C.由条件可知,抛物线开口向上,设抛物线方程为x2=2py (p0),由1 +错误!未找到引用源。二5./

5、.p=8,故抛物线方程为x2=16y.3.【解析】选D.根据点到直线的距离公式,可得抛物线y2=8x的焦点(2,0)到直线x-错误!未找到引用源。y二0的距离d二错误!未找到引用源。4.【解题指南】利用向量的性质及焦半径公式求解.【解析】选A.设Ag, yt),B(X2,y2), C (x3, y3),错误!未找到引用源。+错误!未找到引用源。+错误!未找到引用源。二0,(x厂错误!未找到引用源。)+(X2-错误!未找到引用源。)+(X3-错误!未找到引用 源o )=0,-5-即Xi+X2+X3=错误!未找到引用源。p.又I错误!未找到引用源。I + I错误!未找到引用源。I + I错误!未找

6、到引用源。|=3,幺+错误!未找到引用源。)+(X2+错误! 未找到引用源。)+(X#错误!未找到引用 源。 )二3,即3p=3,/.p=1,故抛物线方彳呈为y-2x.5.【解析】 选C.求抛物线C1:y2=2px (p0)与双曲线C2:错误!未找到引用源。 -错 误!未找到引用源。=1 (a0, b0)的一条渐近线的交点:错误!未找到引用源。解得错误!未找到引用源。所以错误!未找到引用源。二错 误!未找到引用源。,cJ5a;e二错误!未找到引用源。,选C.【变式备选】(2013南安高二检测)双曲线错误!未找到引用源。-错误!未找到 引用源。 二1(a0,b0)的右焦点是抛物线y2=8x的焦点

7、, 两曲线的一个公共点为P,且|PF|二5,则该双曲线的离心率为( )A.错误!未找到引用源。B.错误!未找到引用源。C.2D.错误!未找到引用源。【解析】选C.抛物线的准线为x=-2,设P(xo, y0),则x+2二5,Ax0=3,错误!未找到引用源。=24.错误!未找到引用源。解得错误!未找到引用源。.离心率e二错误!未找到引用源。=2.6.【解题指南】利用焦点弦的弦长公式,即yi+y2+p.6 【解析】抛物线y二错误!未找到引用源。X:即x4y的准线方程为y=-1,| AB |二 |AF | +1BF | =y1+y2+2=5+2=7.答案:77.【解析】yJ2px(p0)的焦点为(错误

8、!未找到引用源。,0).由题意得错误!未找到引用源。二5,解得p=4或p=-12(舍去).答案:4【误区警示】容易把点(-2, 3)看成抛物线上的点,使用焦半径公式,而导致出错.8.【解题指南】利用焦点弦公式.【解析】设A(xbyi),B(x2, y2),则AB的中点的横坐标XF错误!未找到引用源。. 又抛物线的准线方程为x=-1,且|AB| = 0,Xi+x2+p=Xi+x2+2=*l 0.X2二&错误!未找到引用源。二4.答案:49.【解析】设所求抛物线的标准方程为x2=2py (p0),设A (xo, yo) ,M (0, -错误!未找到引用源。).V|AF|=3,yo+错误!未

9、找到引用源。=3,|AM|二错误!未找到引用源。,错误!未找到引用源。+(y+错误!未找到引用源。)J17,错误!未找到引用源。二&代入方程错误!未找到引用源。二2py。得,8=2p (3-错误!未找到引用源。),解得p二2或p=4.所求抛物线的标准方程为x2=4y或x2=8y.-7-10.【解题指南】运用解方程组分别求出A,B坐标,从而求出|0A|和|0B|,利用面积公式求出P即可.【解析】 因为0A丄0B,且0A所在直线的方程为y二错误!未找到引用源。x,所以0B所在直线的方程为y二-错误!未找到引用源。x.由错误!未找到引用源。得A点坐标(错误!未找到引用源。,错误!未找到引用

10、源。),由错误!未找到引用源。得B点坐标(6p, -2错误!未找到引用源。p).|0A|二错误!未找到引用源。|p|,|OB|二4错误!未找到引用源。|p|,SWB二错误!未找到引用源。pJ6错误!未找到引用源。 , 所以p二土错误!未找到引 用源。.即该抛物线的方程为y2=3x或yJ-3x.【拓展提升】抛物线中恒过定点问题过抛物线yJ2px(p0)的顶点任作两条互相垂直的直线0A和0B,则直线AB恒 过定点(2p,0).【举一反三】若本题中0A的直线方程为y=kx, AAOB的面积为6错误!未找到 引用源。”去掉,证明AB恒过定点(2p,0).【证明】由错误!未找到引用源。得A的坐标为(错误

11、!未找到引用源。,错误!未 找到引用源。),TOA丄OB,0B的直线方程为y二-错误!未找到引用源。x.由错误!未找到引用源。得B的坐标为(2pk2, -2pk)k沪错误!未找到引用源。二错误!未找到引用源。二错误!未找到引用源。,AB的方程为y+2pk二错误!未找到引用源。(x-2pk2), 8 整理得k(x-2p) + (k2-1)y=0.由错误!未找到引用源。得错误!未找到引用源。故直线恒过定点(2p,0).门. 【解题指南】 先求出弦长|AB|,再求出点P到直线AB的距离, 从而可表示出APAB的面积,再求最大值即可.【解析】由错误!未找到引用源。解得错误!未找到引用源。或错误!未找到引用 源。A(4,4),B(1,-2),A I AB | =3错误!未找到引用源。,设P (x0, y0)为抛物线AOB这段曲线上一点,d为点P到直线AB的距离,则有d二错误!未找到引用源。二错误!未找到引用源。|错误!未找到引用源。-y0-4|二错误!未找到引

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论