

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、quantum group covariance and the braided structure of deform the connection between braided hopf algebra structure and the quantum group covariance of deformed oscillators is constructed explicitly. in this context we provide deformations of the hopf algebra of functions on su(1,1). quantum subgroup
2、s and their repre 2 002 lju 81 aq.tham 1v1517020/tham:vixraquantumgroupcovariancedeformedandoscillators thebraidedstructureof a.yildiz fezagurseyinstitute,p.o.box6,81220,cengelkoy,istanbul,turkey1. abstract theconnectionbetweenbraidedhopfalgebrastructureandquantumgroupcovarianceofthe deformedoscilla
3、torsisconstructedexplicitly.inthiscontextweprovidedeformationsofthehopfalgebraoffunctionsonsu(1,1).quantumsubgroupsandtheirrepresentationsarealsodiscussed. 1introduction thecovarianceoftheoscillatoralgebrasattractedalotofattentionandisdiscussedindi erentcontexts1.thecovarianceofanalgebraundertheacti
4、onofanoncommutativealgebradeformsthenotionofde ningidenticalcopiesinthetransformedalgebraandthisleadstothedeformationoftheusualtensorproductnamelybraidedtensorproduct.thehopfalgebraaxiomsarereplacedbythebraidedhopfalgebraaxioms2.hencebraidedgrouptheory(selfcontainedreviewscanbefoundinref.3)uni esthe
5、notionsofsymmetryandstatistics.recently,wefoundthegeneralbraidedhopfalgebrasolutionsofthegeneralizedoscillators4.inthisworkweshowthatsomeofthesesolutionsareconnectedwiththequantumgroupcovarianceandwe ndther-matricescontrollingthebraidingstructureandthequantumgroup.wealsodiscusstherepresentationsofqu
6、antumsubgroups. 2 thegeneralizedoscillator,itscovarianceandbraidedhopfstructure supposethatthegeneralizedoscillatoralgebra aa q1a a=q2n aqn=na(1) qna =qa qn iscovariantunderthetransformation (a)=ak1+qnk2+a k3 (a )=a k1 +qnk2 +ak3 (2) (qn)=al1+qnl2+a l 1 the connection between braided hopf algebra st
7、ructure and the quantum group covariance of deformed oscillators is constructed explicitly. in this context we provide deformations of the hopf algebra of functions on su(1,1). quantum subgroups and their repre wherethedeformationparametersq1andqarepositiveandwiththe -structure(a ) =aand (qn) =qn.th
8、eelementsk1,k1,k2,k2,k3,k3,l1,l 1andl2(l2=l2)generatesomealgebra.ouraimisto ndthatalgebraifthetransformationisaquantumgrouptransformation.wewritetheabovetransformationasacovectortransformation x=xt where x=(aa qn), thematrixtisaquantummatrixsatisfying k1k3l1 l andt= k3k11 . k2k2l2 (3) (4)(5) rt1t2=t
9、2t1r andrsatis esqybe r12r13r23=r23r13r12. (6) to ndther-matrixandhencethequantumgroup,wewritetheoscillatoralgebraasacovector algebra x1x2=x2x1r(7)where x1x2=x2x1= aa 2 aa aq n aa(a) 2 aq n qaqaaq n nn n 2n2n (8)(9) andthegeneralformofther-matrix 2 aaqaaa n (a) 2 qa n aq r= 10000a10a600a400a20a70000
10、000000a5000000a30a8000000000a1500a11000000a16100000a90a13000a12000a100a1400000a17 theconstants(ai)appearinginther-matrixistobedeterminedfromtheconsistencyof(7)with theoscillatorrelations(1)andfrom(6).thecovarianceofacovectoralgebraundertheactionofaquantumgroupinducesabraidedhopfalgebrastructurewhose
11、axiomsarecollectivelygivenby m (id m)=m (m id)m (id )=m ( id)=id(id ) =( id) . (10) the connection between braided hopf algebra structure and the quantum group covariance of deformed oscillators is constructed explicitly. in this context we provide deformations of the hopf algebra of functions on su
12、(1,1). quantum subgroups and their repre ( id) m (id s) (m id) (id m)(id ) ( id) ms m s m ( id) (id ) ( id)=(id ) =id m (s id) = (id m) ( id) (id )(m id) (id ) ( id)( id) (id ) ( id)(id )( id) (id ) (m m)(id id) ( )m (s s)(s s) (id ) ( id) (id ). (11) the -structureforabraidedalgebrabisdi erentfromt
13、henon-braidedonesuchthat = ( ) s = s (a b) =b a , a,bb. (12) thebraidedcovectoralgebrahasabraidedhopfalgebrastructure (x)=x 1+1 x, (x)=0,s(x)= x withthebraidingrelations (x1 x2)=x2 x1r, i.e., ab (xi xj)=xb xarij. (13) (14) thematrixrwhichcontrolsthebraidingrelationsshouldsatisfythefollowingcondition
14、s r12r13r23 r12r13r23r12r13r23 (pr+1)(pr 1) r21r = r23r13r12r23r13r12r23r13r120r21r (15) wherepisthepermutationmatrix.hencetheproblemof ndingthequantumgroupleavingthegeneralizedoscillatoralgebracovariantandthebraidingsinducedbythequantumgroupisreducedto ndingthematricesrandr. the connection between
15、braided hopf algebra structure and the quantum group covariance of deformed oscillators is constructed explicitly. in this context we provide deformations of the hopf algebra of functions on su(1,1). quantum subgroups and their repre thegeneralformofthematrixrcanbewrittenas r= c1000000000c20c70000c1
16、200c5000c11000c30c80000c130000c1000000000c100c6000c6000c100000000c110c500c40c90000c14 (16) whichgivesthegeneralformofthebraidingrelations. forthethreedeformationparametersq1andqfree,itturnsoutthatthereisauniquesolutionforthematricesrandrnamely 10 0q21 0000000 00000 (q2 q1) 0000q2 q00(q2 q1) 0q1 00 0
17、0001010 000 000q2 00000 r= q 00 01 00 0q1 q10000 0q102 q q1 00q 000q21 00 00q2 0000 0000 0000 0000 00 q1 q1 00 00 0q q2 q1 q21 00 q2 the connection between braided hopf algebra structure and the quantum group covariance of deformed oscillators is constructed explicitly. in this context we provide de
18、formations of the hopf algebra of functions on su(1,1). quantum subgroups and their repre 1 similartothermatrixofsuq(2)thematrixrisproportionaltor(r=q2q 1r).theentriesofthequantummatrix(4)generatethealgebra k1k1 =k1 k1+q2q 12l 1l1+q 2q1(q2 q1)k3 k3 k1k2 = 11k2k1 k1k2 =q 1q1k2 k1+ 11l2l1+q 2q1(q2 q1)
19、k3 k2 k1k3 =q2q 12 k3k1 k1k3 =q1k3 k1+l21k1l1=ql1k1 k1l 1= 11l 1k1+q 1(q2 q1)l1k3k1l2 =l2k1+q 1(q2 q1)l1k2 k2k2 =q1k2 k2+q 2q21k3 k3 k1 k1+l2 2 k2k3 = 11k3k2 k2k3 =q 1q21k3 k2+l2l1k2l1=q1l1k2 k2l 1=l 1k2+q 1(q2 q1)l2k3 k2l2 =ql2k2 11l 1k1+q 1 q1l1k3) k3k3 =q 2q31k3 k3+l 1l1k3l1=q 1q21l1k3k3l 1=ql 1k
20、3k3l2=q1l2k3 l1l 1=q2q 12l 1l1 l1l2 = 11l2l1. thehopfalgebrastructureisgivenbythegrouphopfalgebra (t)=t t, (t)=1,s(t)=t 1 wheretheinversematrixisgivenby l2k 1l k q 12l2k3 +q 1q 11l1k2 12l 1k3 q 1l1k t 1= q211 121l2k3+1l 1k2l2k1 q 1q1l1k2 11 q q21l1k3 ql 1k1 q2q 11k3k2 qk2k1 q 2q1k3 k2 q 1k2 k1 k 1 k
21、1 q 2q21k3 k3 theelementwhichisde nedtobe 1 . l2k1 k1 q 2q21l2k3 k3+l1k3k2 +l 1k3 k2 11l 1k2 k1 q 1q1l1k2k1 hasgrouplikehopfalgebrastructure ()= , ()=1, s()= 1 andsatis es (19) (20) (21) (22) (23) the connection between braided hopf algebra structure and the quantum group covariance of deformed osci
22、llators is constructed explicitly. in this context we provide deformations of the hopf algebra of functions on su(1,1). quantum subgroups and their repre 24 2 k1=k1,k2=q 1q21k2,k3=1k3,l1=1l1,l2=l2 (24) andtheir*-conjugateswith =. thebraidedhopfalgebrastructureofthegeneralizedoscillator(1)impliedbyth
23、equantumgroupcovarianceisgivenbythecoproducts (qn)=qn 1+1 qn, (a)=a 1+1 a, (a )=a 1+1 a , thecounits (qn)= (a)= (a )=0, theantipodes s(qn)= qn,s(a)= a,s(a )= a andthebraidingsimpliedby(18) (qn qn)(qn a)(a qn)(qn a )(a qn)(a a)(a a )(a a )(a a) = 1nn q2q 1q q, 1n 1a q, 1n 1q a, 12n qa qn+q 1(q q1)q a
24、, 12n n a+q 1(q q1)a q, 1 q2q 1a a, 1 q2q 1a a,12 nnq 1(q q1)a a+q1a a+q q, 2nn2 2 q2q 1q q+1a a. (25) (26) (27) (28) incontrasttothethreeparameterdeformedcasewherethereisauniquesolutionforthebraidings, thetwoparameterdeformedcaseq1=q2hasthreemoresolutionsapartfromthesolutionobtainedbysubstitutingq1
25、=q2into(28).thesesolutionsaresol1: c1=1,c2=q2,c3=0,c4=0,c5=q,c6=0,c7=0, c8=q 2,c9=0,c10=q 1,c11=0,c12=0,c13=0,c14= 1 sol2: c1=1,c2=q2,c3=0,c4=2,c5=q,c6=0,c7=0, c8=q 2,c9=0,c10=q 1,c11=0,c12=0,c13=0,c14=1 sol3: c1=1,c2=q2,c3=0,c4=0,c5=q,c6=0,c7=0, c8=q 2,c9= 2q 2,c10=q 1,c11=0,c12=0,c13=0,c14=1. (29)
26、 (30) (31) the connection between braided hopf algebra structure and the quantum group covariance of deformed oscillators is constructed explicitly. in this context we provide deformations of the hopf algebra of functions on su(1,1). quantum subgroups and their repre theq1=q2caseisspecialnotonlybeca
27、usetherearethreemoresolutionsforthebraidings, 12 butalsother-matrixistriangular(r 12=r21)ands=idissatis edforthequantumgroup.wealsonotethatinthegeneralbraidedhopfalgebrasolutionsgiveninref.4,onlythesolutionswegiveinthissectionarerelatedwiththequantumgroupcovariance. weshouldalsonotethatwhenl1=l 1=k2
28、=k2=0andl2=1thetransformationmatrixisanelementofsu(1,1)intheq=q1=1limit.hencethegroupwede necanbeinterpretedasdeformationsofsu(1,1). 3subgroupsandrepresentations inthegeneralformofthetransformationofthegeneralizedoscillator,theinvariancequantumgroupisanine-parameterquantumgroupwiththreedeformationpa
29、rameters.thisquantumgrouphassevenand veparametersubgroupswhichwearegoingtodiscuss.a:thesevenparametersubgroupcanbeobtainedbysettingl1=l 1=0in(19).thentheconsistencyoftherelationsrequiresq1=q2,i.e.,fortheoscillator aa q2a a=q2n aqn=naqna =qa qn thetransformation (aa qn)=(aa qn k1k30 0 ) k3k1 k2k2l2 (
30、32) leavesthealgebracovariantwheretheentriesofthequantummatrixsatisfy k1k1k1k2 k1k2k1k3 k1k3k1l2 k2k2k2k3 k2k3k2l2 k3k3k3l2 (33) = k1k1,q 1k2k1, qk2k1,q 2k3k1, k1,q2k3 l2k1, q2k2k2+q2k3k3 k1k1+l22,q 1k3k2, k2,q3k3 ql2k2, q4k3k3,q2l2k3. (34) thehopfalgebrastructureisgivenbythegrouphopfalgebra,i.e., (
31、t)=t t, (t)=1,s(t)=t 1 (35) the connection between braided hopf algebra structure and the quantum group covariance of deformed oscillators is constructed explicitly. in this context we provide deformations of the hopf algebra of functions on su(1,1). quantum subgroups and their repre andthematrixinv
32、erseis t 1 = l2k1 q4l2k3 k3k2 qk2k1 wheretheelement q0 1 l2k10 k3k2 q 1k2k1k1k1 q2k3k3 4 l2k3 (36) l2(k1k1 q2k3k3) (37)(38) isgrouplikeandsatis es ()= , ()=1,s()= 1 k1=k1,k2=q3k2,k3=q6k3,l2=l2, =. (39) toconstructtherepresentation,wetakethegeneratorsofthisalgebraasoperatorsactingon somespace.we rst
33、ndthesimultaneouslydiagonalizibleoperators:theoperatorsl2,k1and k1commuteamongthemselvesandtakingintoaccountthatl 2=l2wecantaketheseoperatorsasdiagonaloperators.wetaketheeigenvalueofthehermitianoperatoras l2|n =aqn|n whereaisarealconstant.therelationsofthealgebrasuggestthat k2|n |n 1 , k3|n |n 2 (41
34、)(40) andhencewetaketheactionsofthegeneratorsas k1|n =k1,n|n , k1|n =k1,n|n , k2|n =k2,n|n 1 k3|n =k3,n|n 2 k2|n =k2k3|n =k3,n+1|n+1 ,n+2|n+2 . (42) substitutingtheseinto(34)weobtain k1,n=bqn, k2,n=cqn, k3,n=dqn (43) whereb,canddarecomplexconstantssatisfying |b|2=a2+q2|d|2. (44) wenotethatthereprese
35、ntationisin nitedimensional. b:the veparametersubgroupcanbeobtainedbysettingl1=l 1=k3=k3=0inthetransformation(2),i.e.,forthealgebra aa q1a a=q2n aqn=naqna =qa qn thetransformation (45) the connection between braided hopf algebra structure and the quantum group covariance of deformed oscillators is c
36、onstructed explicitly. in this context we provide deformations of the hopf algebra of functions on su(1,1). quantum subgroups and their repre (aa qn)=(aa qn leavesthealgebracovariantwheretheentriesofthequantummatrixsatisfy k1k1k1k2 k1k2k1l2 k2k2k2l2 k100 0 ) 0k1 k2k2l2 (46) = k1k1, 1 1k2k1, q 1q1k2k
37、1,l2k1 q1k2k2 k1k1+l22ql2k2. (47) thehopfalgebrastructureisgivenbythegrouphopfalgebra (t)=t t, theinversematrixis t where 1 (t)=1, s(t)=t 1. (48) = l2k1 qk2k1 00 1 l2k10 q 1k2k1k1k1 (49) l2k1k1 (50) s()= 1 l2=l2. (51)(52) isgrouplike ()= , andsatis es k1=k1, ()=1, k2=q 1q21k2, similartotheconstructi
38、onoftherepresentationofthesevenparametersubgroup,theelements l2andk1canbetakenasdiagonaloperatorsandk2andk2canbetakenasloweringandraisingoperatorsrespectively.wetaketheeigenvalueofthehermitianoperatoras l2|n =aqn|n andfortheotheroperatorswetake k1|n =k1,n|n ,k2|n =k2,n|n 1 , k1|n =k1,n|n ,k2|n =k2,n
39、+1|n+1 . substitutingtheseinto(47)weobtain (53) (54) k1,n=b q1 q1 q2 |b|2 qn1 q1 q1q1 the connection between braided hopf algebra structure and the quantum group covariance of deformed oscillators is constructed explicitly. in this context we provide deformations of the hopf algebra of functions on
40、su(1,1). quantum subgroups and their repre whereaisrealandbiscomplex.thequadraticcasimirofthealgebrawhichisfoundtobe c=k1k1+(q 2 1)k2k2+q 2l22 (56)(57) hastheeigenvalue c|n =(a2+q 2|b|2)|n . inthealgebra(47)whenweidentify l2qh,k1=k1q h,k2(q q 1)1/2x ,k2(q q 1)1/2x+,q1=1 (58) thealgebraturnsouttobe q
41、h x=q1 xqh , 2hx+x x x+= q q 2h the connection between braided hopf algebra structure and the quantum group covariance of deformed oscillators is constructed explicitly. in this context we provide deformations of the hopf algebra of functions on su(1,1). quantum subgroups and their repre connections
42、betweenquantumgroupsandnonextensivestatisticalmechanics6.inthisworkweuserealdeformationparameters,however,thefractionalsupersymmetricstructuresrequireatleastoneofthedeformationparameterstobearootofunity7asthegeneralizationofthe(-1)factorinthefermioniccase.onemorethingwhichdeservesaseparatestudyisthe
43、decouplingoftheoscillatorsortheunbraidingtransformations8. thebraidedcovectoralgebrascovariantunderquantumgroupsarealsocovariantunderthebraidedgroupsobtainedfromquantumgroupsbyatransmutationprocess3.themainingredientofthisconstructionisther-matrix.hencether-matrixwefoundde nesanewbraidedgroupwhichwedonotconsiderhere. the conne
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年医用高频仪器设备项目发展计划
- 小学1-6年级奥数题及答案每日一练
- 2025年血橙提取物化妆品项目发展计划
- 2025年多功能抑尘车项目合作计划书
- 父亲的拥抱阅读答案 父亲让我抱抱你 答案
- 消防设施检测合同范本(2024版)
- 2025年绝缘材料:绝缘套管合作协议书
- 2025年全数字摄影测量系统合作协议书
- 教育法规执行中的挑战与对策
- 2025年PU系列水乳型聚氨酯皮革涂饰剂项目建议书
- 2024-2030年中国休闲素食行业市场深度分析及发展潜力预测报告
- 朝花夕拾考试题及答案
- 高中坚持议论文范文7篇
- 浙江省湖州市2024-2025学年高一下学期期末考试数学试卷
- 2025年村干部公务员试题及答案
- 煤矿采矿制图培训课件
- 羊水栓塞个案护理
- 2024年萍乡市县区事业单位引进人才笔试真题
- 2025-2030中国透明无色聚酰亚胺薄膜行业发展动态及应用趋势预测报告
- 2025中国白酒酒业市场中期研究报告
- 紧急疏散培训课件
评论
0/150
提交评论