

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、quantum group covariance and the braided structure of deform the connection between braided hopf algebra structure and the quantum group covariance of deformed oscillators is constructed explicitly. in this context we provide deformations of the hopf algebra of functions on su(1,1). quantum subgroup
2、s and their repre 2 002 lju 81 aq.tham 1v1517020/tham:vixraquantumgroupcovariancedeformedandoscillators thebraidedstructureof a.yildiz fezagurseyinstitute,p.o.box6,81220,cengelkoy,istanbul,turkey1. abstract theconnectionbetweenbraidedhopfalgebrastructureandquantumgroupcovarianceofthe deformedoscilla
3、torsisconstructedexplicitly.inthiscontextweprovidedeformationsofthehopfalgebraoffunctionsonsu(1,1).quantumsubgroupsandtheirrepresentationsarealsodiscussed. 1introduction thecovarianceoftheoscillatoralgebrasattractedalotofattentionandisdiscussedindi erentcontexts1.thecovarianceofanalgebraundertheacti
4、onofanoncommutativealgebradeformsthenotionofde ningidenticalcopiesinthetransformedalgebraandthisleadstothedeformationoftheusualtensorproductnamelybraidedtensorproduct.thehopfalgebraaxiomsarereplacedbythebraidedhopfalgebraaxioms2.hencebraidedgrouptheory(selfcontainedreviewscanbefoundinref.3)uni esthe
5、notionsofsymmetryandstatistics.recently,wefoundthegeneralbraidedhopfalgebrasolutionsofthegeneralizedoscillators4.inthisworkweshowthatsomeofthesesolutionsareconnectedwiththequantumgroupcovarianceandwe ndther-matricescontrollingthebraidingstructureandthequantumgroup.wealsodiscusstherepresentationsofqu
6、antumsubgroups. 2 thegeneralizedoscillator,itscovarianceandbraidedhopfstructure supposethatthegeneralizedoscillatoralgebra aa q1a a=q2n aqn=na(1) qna =qa qn iscovariantunderthetransformation (a)=ak1+qnk2+a k3 (a )=a k1 +qnk2 +ak3 (2) (qn)=al1+qnl2+a l 1 the connection between braided hopf algebra st
7、ructure and the quantum group covariance of deformed oscillators is constructed explicitly. in this context we provide deformations of the hopf algebra of functions on su(1,1). quantum subgroups and their repre wherethedeformationparametersq1andqarepositiveandwiththe -structure(a ) =aand (qn) =qn.th
8、eelementsk1,k1,k2,k2,k3,k3,l1,l 1andl2(l2=l2)generatesomealgebra.ouraimisto ndthatalgebraifthetransformationisaquantumgrouptransformation.wewritetheabovetransformationasacovectortransformation x=xt where x=(aa qn), thematrixtisaquantummatrixsatisfying k1k3l1 l andt= k3k11 . k2k2l2 (3) (4)(5) rt1t2=t
9、2t1r andrsatis esqybe r12r13r23=r23r13r12. (6) to ndther-matrixandhencethequantumgroup,wewritetheoscillatoralgebraasacovector algebra x1x2=x2x1r(7)where x1x2=x2x1= aa 2 aa aq n aa(a) 2 aq n qaqaaq n nn n 2n2n (8)(9) andthegeneralformofther-matrix 2 aaqaaa n (a) 2 qa n aq r= 10000a10a600a400a20a70000
10、000000a5000000a30a8000000000a1500a11000000a16100000a90a13000a12000a100a1400000a17 theconstants(ai)appearinginther-matrixistobedeterminedfromtheconsistencyof(7)with theoscillatorrelations(1)andfrom(6).thecovarianceofacovectoralgebraundertheactionofaquantumgroupinducesabraidedhopfalgebrastructurewhose
11、axiomsarecollectivelygivenby m (id m)=m (m id)m (id )=m ( id)=id(id ) =( id) . (10) the connection between braided hopf algebra structure and the quantum group covariance of deformed oscillators is constructed explicitly. in this context we provide deformations of the hopf algebra of functions on su
12、(1,1). quantum subgroups and their repre ( id) m (id s) (m id) (id m)(id ) ( id) ms m s m ( id) (id ) ( id)=(id ) =id m (s id) = (id m) ( id) (id )(m id) (id ) ( id)( id) (id ) ( id)(id )( id) (id ) (m m)(id id) ( )m (s s)(s s) (id ) ( id) (id ). (11) the -structureforabraidedalgebrabisdi erentfromt
13、henon-braidedonesuchthat = ( ) s = s (a b) =b a , a,bb. (12) thebraidedcovectoralgebrahasabraidedhopfalgebrastructure (x)=x 1+1 x, (x)=0,s(x)= x withthebraidingrelations (x1 x2)=x2 x1r, i.e., ab (xi xj)=xb xarij. (13) (14) thematrixrwhichcontrolsthebraidingrelationsshouldsatisfythefollowingcondition
14、s r12r13r23 r12r13r23r12r13r23 (pr+1)(pr 1) r21r = r23r13r12r23r13r12r23r13r120r21r (15) wherepisthepermutationmatrix.hencetheproblemof ndingthequantumgroupleavingthegeneralizedoscillatoralgebracovariantandthebraidingsinducedbythequantumgroupisreducedto ndingthematricesrandr. the connection between
15、braided hopf algebra structure and the quantum group covariance of deformed oscillators is constructed explicitly. in this context we provide deformations of the hopf algebra of functions on su(1,1). quantum subgroups and their repre thegeneralformofthematrixrcanbewrittenas r= c1000000000c20c70000c1
16、200c5000c11000c30c80000c130000c1000000000c100c6000c6000c100000000c110c500c40c90000c14 (16) whichgivesthegeneralformofthebraidingrelations. forthethreedeformationparametersq1andqfree,itturnsoutthatthereisauniquesolutionforthematricesrandrnamely 10 0q21 0000000 00000 (q2 q1) 0000q2 q00(q2 q1) 0q1 00 0
17、0001010 000 000q2 00000 r= q 00 01 00 0q1 q10000 0q102 q q1 00q 000q21 00 00q2 0000 0000 0000 0000 00 q1 q1 00 00 0q q2 q1 q21 00 q2 the connection between braided hopf algebra structure and the quantum group covariance of deformed oscillators is constructed explicitly. in this context we provide de
18、formations of the hopf algebra of functions on su(1,1). quantum subgroups and their repre 1 similartothermatrixofsuq(2)thematrixrisproportionaltor(r=q2q 1r).theentriesofthequantummatrix(4)generatethealgebra k1k1 =k1 k1+q2q 12l 1l1+q 2q1(q2 q1)k3 k3 k1k2 = 11k2k1 k1k2 =q 1q1k2 k1+ 11l2l1+q 2q1(q2 q1)
19、k3 k2 k1k3 =q2q 12 k3k1 k1k3 =q1k3 k1+l21k1l1=ql1k1 k1l 1= 11l 1k1+q 1(q2 q1)l1k3k1l2 =l2k1+q 1(q2 q1)l1k2 k2k2 =q1k2 k2+q 2q21k3 k3 k1 k1+l2 2 k2k3 = 11k3k2 k2k3 =q 1q21k3 k2+l2l1k2l1=q1l1k2 k2l 1=l 1k2+q 1(q2 q1)l2k3 k2l2 =ql2k2 11l 1k1+q 1 q1l1k3) k3k3 =q 2q31k3 k3+l 1l1k3l1=q 1q21l1k3k3l 1=ql 1k
20、3k3l2=q1l2k3 l1l 1=q2q 12l 1l1 l1l2 = 11l2l1. thehopfalgebrastructureisgivenbythegrouphopfalgebra (t)=t t, (t)=1,s(t)=t 1 wheretheinversematrixisgivenby l2k 1l k q 12l2k3 +q 1q 11l1k2 12l 1k3 q 1l1k t 1= q211 121l2k3+1l 1k2l2k1 q 1q1l1k2 11 q q21l1k3 ql 1k1 q2q 11k3k2 qk2k1 q 2q1k3 k2 q 1k2 k1 k 1 k
21、1 q 2q21k3 k3 theelementwhichisde nedtobe 1 . l2k1 k1 q 2q21l2k3 k3+l1k3k2 +l 1k3 k2 11l 1k2 k1 q 1q1l1k2k1 hasgrouplikehopfalgebrastructure ()= , ()=1, s()= 1 andsatis es (19) (20) (21) (22) (23) the connection between braided hopf algebra structure and the quantum group covariance of deformed osci
22、llators is constructed explicitly. in this context we provide deformations of the hopf algebra of functions on su(1,1). quantum subgroups and their repre 24 2 k1=k1,k2=q 1q21k2,k3=1k3,l1=1l1,l2=l2 (24) andtheir*-conjugateswith =. thebraidedhopfalgebrastructureofthegeneralizedoscillator(1)impliedbyth
23、equantumgroupcovarianceisgivenbythecoproducts (qn)=qn 1+1 qn, (a)=a 1+1 a, (a )=a 1+1 a , thecounits (qn)= (a)= (a )=0, theantipodes s(qn)= qn,s(a)= a,s(a )= a andthebraidingsimpliedby(18) (qn qn)(qn a)(a qn)(qn a )(a qn)(a a)(a a )(a a )(a a) = 1nn q2q 1q q, 1n 1a q, 1n 1q a, 12n qa qn+q 1(q q1)q a
24、, 12n n a+q 1(q q1)a q, 1 q2q 1a a, 1 q2q 1a a,12 nnq 1(q q1)a a+q1a a+q q, 2nn2 2 q2q 1q q+1a a. (25) (26) (27) (28) incontrasttothethreeparameterdeformedcasewherethereisauniquesolutionforthebraidings, thetwoparameterdeformedcaseq1=q2hasthreemoresolutionsapartfromthesolutionobtainedbysubstitutingq1
25、=q2into(28).thesesolutionsaresol1: c1=1,c2=q2,c3=0,c4=0,c5=q,c6=0,c7=0, c8=q 2,c9=0,c10=q 1,c11=0,c12=0,c13=0,c14= 1 sol2: c1=1,c2=q2,c3=0,c4=2,c5=q,c6=0,c7=0, c8=q 2,c9=0,c10=q 1,c11=0,c12=0,c13=0,c14=1 sol3: c1=1,c2=q2,c3=0,c4=0,c5=q,c6=0,c7=0, c8=q 2,c9= 2q 2,c10=q 1,c11=0,c12=0,c13=0,c14=1. (29)
26、 (30) (31) the connection between braided hopf algebra structure and the quantum group covariance of deformed oscillators is constructed explicitly. in this context we provide deformations of the hopf algebra of functions on su(1,1). quantum subgroups and their repre theq1=q2caseisspecialnotonlybeca
27、usetherearethreemoresolutionsforthebraidings, 12 butalsother-matrixistriangular(r 12=r21)ands=idissatis edforthequantumgroup.wealsonotethatinthegeneralbraidedhopfalgebrasolutionsgiveninref.4,onlythesolutionswegiveinthissectionarerelatedwiththequantumgroupcovariance. weshouldalsonotethatwhenl1=l 1=k2
28、=k2=0andl2=1thetransformationmatrixisanelementofsu(1,1)intheq=q1=1limit.hencethegroupwede necanbeinterpretedasdeformationsofsu(1,1). 3subgroupsandrepresentations inthegeneralformofthetransformationofthegeneralizedoscillator,theinvariancequantumgroupisanine-parameterquantumgroupwiththreedeformationpa
29、rameters.thisquantumgrouphassevenand veparametersubgroupswhichwearegoingtodiscuss.a:thesevenparametersubgroupcanbeobtainedbysettingl1=l 1=0in(19).thentheconsistencyoftherelationsrequiresq1=q2,i.e.,fortheoscillator aa q2a a=q2n aqn=naqna =qa qn thetransformation (aa qn)=(aa qn k1k30 0 ) k3k1 k2k2l2 (
30、32) leavesthealgebracovariantwheretheentriesofthequantummatrixsatisfy k1k1k1k2 k1k2k1k3 k1k3k1l2 k2k2k2k3 k2k3k2l2 k3k3k3l2 (33) = k1k1,q 1k2k1, qk2k1,q 2k3k1, k1,q2k3 l2k1, q2k2k2+q2k3k3 k1k1+l22,q 1k3k2, k2,q3k3 ql2k2, q4k3k3,q2l2k3. (34) thehopfalgebrastructureisgivenbythegrouphopfalgebra,i.e., (
31、t)=t t, (t)=1,s(t)=t 1 (35) the connection between braided hopf algebra structure and the quantum group covariance of deformed oscillators is constructed explicitly. in this context we provide deformations of the hopf algebra of functions on su(1,1). quantum subgroups and their repre andthematrixinv
32、erseis t 1 = l2k1 q4l2k3 k3k2 qk2k1 wheretheelement q0 1 l2k10 k3k2 q 1k2k1k1k1 q2k3k3 4 l2k3 (36) l2(k1k1 q2k3k3) (37)(38) isgrouplikeandsatis es ()= , ()=1,s()= 1 k1=k1,k2=q3k2,k3=q6k3,l2=l2, =. (39) toconstructtherepresentation,wetakethegeneratorsofthisalgebraasoperatorsactingon somespace.we rst
33、ndthesimultaneouslydiagonalizibleoperators:theoperatorsl2,k1and k1commuteamongthemselvesandtakingintoaccountthatl 2=l2wecantaketheseoperatorsasdiagonaloperators.wetaketheeigenvalueofthehermitianoperatoras l2|n =aqn|n whereaisarealconstant.therelationsofthealgebrasuggestthat k2|n |n 1 , k3|n |n 2 (41
34、)(40) andhencewetaketheactionsofthegeneratorsas k1|n =k1,n|n , k1|n =k1,n|n , k2|n =k2,n|n 1 k3|n =k3,n|n 2 k2|n =k2k3|n =k3,n+1|n+1 ,n+2|n+2 . (42) substitutingtheseinto(34)weobtain k1,n=bqn, k2,n=cqn, k3,n=dqn (43) whereb,canddarecomplexconstantssatisfying |b|2=a2+q2|d|2. (44) wenotethatthereprese
35、ntationisin nitedimensional. b:the veparametersubgroupcanbeobtainedbysettingl1=l 1=k3=k3=0inthetransformation(2),i.e.,forthealgebra aa q1a a=q2n aqn=naqna =qa qn thetransformation (45) the connection between braided hopf algebra structure and the quantum group covariance of deformed oscillators is c
36、onstructed explicitly. in this context we provide deformations of the hopf algebra of functions on su(1,1). quantum subgroups and their repre (aa qn)=(aa qn leavesthealgebracovariantwheretheentriesofthequantummatrixsatisfy k1k1k1k2 k1k2k1l2 k2k2k2l2 k100 0 ) 0k1 k2k2l2 (46) = k1k1, 1 1k2k1, q 1q1k2k
37、1,l2k1 q1k2k2 k1k1+l22ql2k2. (47) thehopfalgebrastructureisgivenbythegrouphopfalgebra (t)=t t, theinversematrixis t where 1 (t)=1, s(t)=t 1. (48) = l2k1 qk2k1 00 1 l2k10 q 1k2k1k1k1 (49) l2k1k1 (50) s()= 1 l2=l2. (51)(52) isgrouplike ()= , andsatis es k1=k1, ()=1, k2=q 1q21k2, similartotheconstructi
38、onoftherepresentationofthesevenparametersubgroup,theelements l2andk1canbetakenasdiagonaloperatorsandk2andk2canbetakenasloweringandraisingoperatorsrespectively.wetaketheeigenvalueofthehermitianoperatoras l2|n =aqn|n andfortheotheroperatorswetake k1|n =k1,n|n ,k2|n =k2,n|n 1 , k1|n =k1,n|n ,k2|n =k2,n
39、+1|n+1 . substitutingtheseinto(47)weobtain (53) (54) k1,n=b q1 q1 q2 |b|2 qn1 q1 q1q1 the connection between braided hopf algebra structure and the quantum group covariance of deformed oscillators is constructed explicitly. in this context we provide deformations of the hopf algebra of functions on
40、su(1,1). quantum subgroups and their repre whereaisrealandbiscomplex.thequadraticcasimirofthealgebrawhichisfoundtobe c=k1k1+(q 2 1)k2k2+q 2l22 (56)(57) hastheeigenvalue c|n =(a2+q 2|b|2)|n . inthealgebra(47)whenweidentify l2qh,k1=k1q h,k2(q q 1)1/2x ,k2(q q 1)1/2x+,q1=1 (58) thealgebraturnsouttobe q
41、h x=q1 xqh , 2hx+x x x+= q q 2h the connection between braided hopf algebra structure and the quantum group covariance of deformed oscillators is constructed explicitly. in this context we provide deformations of the hopf algebra of functions on su(1,1). quantum subgroups and their repre connections
42、betweenquantumgroupsandnonextensivestatisticalmechanics6.inthisworkweuserealdeformationparameters,however,thefractionalsupersymmetricstructuresrequireatleastoneofthedeformationparameterstobearootofunity7asthegeneralizationofthe(-1)factorinthefermioniccase.onemorethingwhichdeservesaseparatestudyisthe
43、decouplingoftheoscillatorsortheunbraidingtransformations8. thebraidedcovectoralgebrascovariantunderquantumgroupsarealsocovariantunderthebraidedgroupsobtainedfromquantumgroupsbyatransmutationprocess3.themainingredientofthisconstructionisther-matrix.hencether-matrixwefoundde nesanewbraidedgroupwhichwedonotconsiderhere. the conne
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全监护知识育婴师试题及答案
- 市场营销与马工学管理学的结合试题及答案
- 关于全媒体运营的试题及答案
- 银行从业资格考试最佳案例试题及答案
- 供应链风险管理试题及答案技巧
- 基因表达调控的生物学过程试题及答案
- 预算员团队合作与试题答案技巧
- 预算员证书申请知识考核试题及答案
- 电子商务设计师文化传播试题及答案
- 2024年银行从业资格考试高频试题及答案
- 宠物犬品种识别-玩赏犬品种(宠物品种)
- YS/T 1025-2015电子薄膜用高纯钨及钨合金溅射靶材
- 《社会主义核心价值观》优秀课件
- 髋关节的解剖-课件
- 幼儿园绘本故事:《十二生肖》 课件
- 一例心肌梗塞患者的病例讨论培训课件
- GB∕T 13171.2-2022 洗衣粉 第2部分:试验方法
- 楷书(课件)课件
- 工程监理部人员分工与职责
- 课程设计 CA6140拨叉说明书
- 成语故事杞人忧天PPT教案
评论
0/150
提交评论