ID控制的意义中英文翻译资料_第1页
ID控制的意义中英文翻译资料_第2页
ID控制的意义中英文翻译资料_第3页
ID控制的意义中英文翻译资料_第4页
ID控制的意义中英文翻译资料_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、. The significance of PID controlThe current level of industrial automation industries to measure the level of modernization has become an important symbol. Meanwhile, the control also experienced the development of the theory of classical control theory, modern control theory and intelligent contro

2、l theory of three stages. Intelligent control is a typical example of fuzzy automatic washing machine. Open-loop control system can be divided into control systems and closed-loop control system. A control system including controller, sensors, transmitters, actuators, input and output interfaces. Co

3、ntroller's output through the output interface, the implementing agency, added to the charged system; control system, the amount charged, through sensors, transmitters, sent to the controller through the input interface. Different control systems, sensors, transmitters, actuators are not the sam

4、e. Such as pressure control system pressure sensor to be used. Electric heating control system sensor is a temperature sensor. At present, PID control and controller or intelligent PID controller (instrument) has a lot of products have been in the engineering practice has been widely applied, there

5、is a wide range of PID controllers, the major companies have developed PID parameter self-tuning capabilities of intelligent controller (intelligent regulator), which automatically adjusts the PID controller parameters are adjusted through the intelligent or self-correction, adaptive algorithms to a

6、chieve. PID control are achieved using pressure, temperature, flow, liquid level controller, PID control can achieve programmable controller (PLC), also allows PID control of PC systems, etc. Programmable Logic Controller (PLC) is to use the closed-loop PID control module to achieve control, program

7、mable logic controller (PLC) can be connected directly with ControlNet, such as Rockwell's PLC-5 and so on. PID control function also allows the controller, such as Rockwell's Logix product line, which can be connected directly with ControlNet, use the network to achieve its remote control f

8、unctions.1, the open-loop control system Open-loop control system (open-loop control system) is charged with the object output (controlled variables) on the controller (controller) did not affect the output. In this control system, not dependent on the amount will be charged against sending it back

9、to form any closed loops.2, closed loop control systemClosed loop control system (closed-loop control system) is characterized by the system control object output (controlled variables) will affect the controller against the output sent back to form one or more closed loop. Closed-loop control syste

10、m has positive feedback and negative feedback, if the feedback signal and system for a given value of signal contrast, is known as negative feedback (Negative Feedback), if the same polarity is called positive feedback, the general closed-loop negative feedback control systems are used , also known

11、as negative feedback control system. Many examples of closed loop control system. Such person is a negative feedback loop control system, the eye is the sensor, as feedback, the human system through constant correction to all the right moves last. If there are no eyes, no feedback loop, will become

12、an open-loop control system. Other cases, when a truly automatic washing machines have to continuously check whether clothes washed, and cut off the power automatically after cleaning, it is a closed loop control system.3, step response Step response is a step input (step function) added to the syst

13、em, the system outputs. Steady-state error is the response of the system into steady state, the system's expected output and actual output of the difference. Control system performance can be stable, accurate, fast and three words to describe. Stability is the stability of the system (stability)

14、, a system to work properly, first of all must be stable, from the step response appears to be that convergence; quasi-control system refers to the accuracy, control precision, usually stable state error to (Steady-state error) description, it said the system output and the expected steady-state val

15、ue of the difference; faster control system response is fast, usually the rise time to quantify.4, PID control principles and characteristicsIn engineering practice, the most widely used regulator control law is proportional, integral, differential control, referred to as PID control, also known as

16、PID regulator. PID controller has been developed for nearly 70 years, it is its simple structure, stable, reliable, easy to adjust and become one of the main techniques of industrial control. When the structure and parameters of the object and can not fully grasp, or lack of accurate mathematical mo

17、dels, control theory is difficult to use other technologies, the system controller structure and parameters must rely on experience and on-site commissioning to determine, when applied PID control technique is more convenient. That is, when we do not fully understand a system and the controlled obje

18、ct, or can not be an effective means of measurement to obtain system parameters, the most suitable PID control technology. PID control, in practice there are PI and PD control. PID controller is the error according to the system, using proportional, integral, differential calculation of the volume c

19、ontrol to control. Proportion (P) controlProportional control is the most simple control method. The controller's output and the input error signal proportional. When only a proportional control system output when there is steady-state error (Steady-state error). Integral (I) control In integral

20、 control, the controller's output and the input error signal proportional to the integral. An automatic control system into the steady state if there is steady-state error, claimed that this control system is called a steady-state error or poor system (System with Steady-state Error). In order t

21、o eliminate steady state error, the controller must introduce the "integral term." Integral term of the error depends on the time integral, as time increases, integral term will increase. Thus, even if the error is very small, integral term will increase over time to increase its promotion

22、 of the controller output increases to further reduce the steady-state error, until zero. Therefore, the ratio of + integral (PI) controller allows the system to enter steady state of no steady state error.Differential (D) control In the differential control, the controller output and differential i

23、nput error signal (ie, rate of change of error) is proportional to. Automatic control system to overcome the errors in the adjustment process of oscillation or even instability may occur. The reason is because of greater inertia components (links), or a lag (delay) component, can inhibit the role of

24、 error, the changes always lag behind changes in the error. The solution is to change the role of inhibition of error, "ahead", that is close to zero in the error and suppress the role of error should be zero. This means that the controller only the introduction of the "ratio" it

25、em is often not enough, the proportion of item only to enlarge the role of the magnitude of the error, but now need to increase the "differential item" that can change the trend of forecast errors, In this way, with the proportion of + differential controller, it can advance to the role of

26、 inhibition of the control error is zero, even negative, thus avoiding the charged amount of serious overshoot. Therefore have greater inertia or lag the controlled object, proportional + derivative (PD) controller5, PID controller tuning Tuning PID controller is the core of the control system desig

27、n. It is based on the characteristics of controlled process to determine the proportion of PID controller coefficients, integral time and derivative time, the size of the. PID controller tuning are many ways to sum up, there are two categories: First, tuning the theoretical calculation. It is mainly

28、 based on the mathematical model, through theoretical calculations to determine the controller parameters. This method the calculated data may not be directly used, it must adjust and revise engineering. Second, the tuning method works, it mainly relies on engineering experience, directly in the con

29、trol experiments carried out, and the method is simple, easy to master, in engineering practice is widely used. PID controller parameter tuning method works, mainly the critical ratio, reaction curve and attenuation. Three methods have their own characteristics, their common points are the experimen

30、t, and then follow the empirical formula works on the controller parameter tuning. But no matter which method used by the controller parameters are needed in the actual operation of the final adjustment and improvement. Now commonly used is the critical ratio method. PID controller using the method

31、parameter setting of the following steps: (1) first pre-select a short enough sampling period of the system to work; (2) by adding proportional control only part until the system appears critical step response input oscillation Note the amplification factor and the proportion of time critical oscill

32、ation period; (3) a certain degree of control in the formula be adopted under the PID controller parametersPID控制的意义目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控制系统包括控制器、传感器、变送器、执行机构、输入输出接口。控制器的输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器

33、,变送器,通过输入接口送到控制器。不同的控制系统,其传感器、变送器、执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器,其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。 可编程控制器(PLC) 是利用其闭环控制模块来实现

34、PID控制,而可编程控制器可以直接与ControlNet相连,如Rockwell的PLC-5等。还有可以实现 PID控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。1、开环控制系统开环控制系统是指被控对象的输出(被控制量)对控制器的输出没有影响。在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。2、闭环控制系统闭环控制系统的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈,若极性相同,则称为正反馈

35、,一般闭环控制系统均采用负反馈,又称负反馈控制系统。闭环控制系统的例子很多。比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正最后作出各种正确的动作。如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系统。另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一个闭环控制系统。3、阶跃响应阶跃响应是指将一个阶跃输入加到系统上时,系统的输出。稳态误差是指系统的响应进入稳态后,系统的期望输出与实际输出之差。控制系统的性能可以用稳、准、快三个字来描述。稳是指系统的稳定性,一个系统要能正常工作,首先必须是稳定的,从阶跃响应

36、上看应该是收敛的;准是指控制系统的准确性、控制精度,通常用稳态误差来描述,它表示系统输出稳态值与期望值之差;快是指控制系统响应的快速性,通常用上升时间来定量描述。4、PID控制的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论