下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、;圆锥曲线与方程复习课 椭 圆一椭圆及其标准方程1椭圆的定义:平面内与两定点F1,F2距离的和等于常数的点的轨迹叫做椭圆,即点集M=P| |PF1|+|PF2|=2a,2a|F1F2|=2c;这里两个定点F1,F2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c。(时为线段,无轨迹)。2标准方程: 焦点在x轴上:(ab0); 焦点F(±c,0)焦点在y轴上:(ab0); 焦点F(0, ±c) 注意:在两种标准方程中,总有ab0,并且椭圆的焦点总在长轴上;两种标准方程可用一般形式表示: 或者 mx2+ny2=1 二椭圆的简单几何性质: 1.范围 (1)椭圆(ab0) 横坐标-ax
2、a ,纵坐标-bxb (2)椭圆(ab0) 横坐标-bxb,纵坐标-axa 2.对称性 椭圆关于x轴y轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心 3.顶点 (1)椭圆的顶点:A1(-a,0),A2(a,0),B1(0,-b),B2(0,b) (2)线段A1A2,B1B2 分别叫做椭圆的长轴长等于2a,短轴长等于2b,a和b分别叫做椭圆的长半轴长和短半轴长。 4离心率 (1)我们把椭圆的焦距与长轴长的比,即称为椭圆的离心率,记作e(), 是圆;e越接近于0 (e越小),椭圆就越接近于圆;e越接近于1 (e越大),椭圆越扁;注意:离心率的大小只与椭
3、圆本身的形状有关,与其所处的位置无关。(2)椭圆的第二定义:平面内与一个定点(焦点)和一定直线(准线)的距离的比为常数e,(0e1)的点的轨迹为椭圆。焦点在x轴上:(ab0)准线方程:焦点在y轴上:(ab0)准线方程:小结一:基本元素(1)基本量:a、b、c、e、(共四个量), 特征三角形(2)基本点:顶点、焦点、中心(共七个点)(3)基本线:对称轴(共两条线)5椭圆的的内外部(1)点在椭圆的内部.(2)点在椭圆的外部.6.几何性质 (1) 最大角 (2)最大距离,最小距离例题讲解:一.椭圆定义:方程化简的结果是 2若的两个顶点,的周长为,则顶点的轨迹方程是 二利用标准方程确定参数1.若方程+
4、=1(1)表示圆,则实数k的取值是 .(2)表示x型椭圆,则实数k的取值范围是 .(3)表示y型椭圆,则实数k的取值范围是 .(4)表示椭圆,则实数k的取值范围是 .2.椭圆的长轴长等于 ,短轴长等于 , 顶点坐标是 ,焦点的坐标是 ,焦距是 ,离心率等于 ,通径是_.3椭圆的焦距为,则= 。4椭圆的一个焦点是,那么 。三待定系数法求椭圆标准方程1若椭圆经过点,则该椭圆的标准方程为 。2焦点在坐标轴上,且,的椭圆的标准方程为 3焦点在轴上,椭圆的标准方程为4. 已知三点P(5,2)、(6,0)、(6,0),求以、为焦点且过点P的椭圆的标准方程;变式:求与椭圆共焦点,且过点的椭圆方程。四焦点三角
5、形1椭圆的焦点为、,是椭圆过焦点的弦,则的周长是 。2设,为椭圆的焦点,为椭圆上的任一点,则的周长是多少?的面积的最大值是多少?3设点是椭圆上的一点,是焦点,若是直角,则的面积为 。变式:已知椭圆,焦点为、,是椭圆上一点若,求的面积五离心率的有关问题1.椭圆的离心率为,则 2.从椭圆短轴的一个端点看长轴两端点的视角为,则此椭圆的离心率为 3椭圆的一焦点与短轴两顶点组成一个等边三角形,则椭圆的离心率为 4.设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若F1PF2为等腰直角三角形,求椭圆的离心率。5.在中,若以为焦点的椭圆经过点,则该椭圆的离心率 直线与椭圆:1.椭圆上的点到直线l:的距离的最小值为_2已知是椭圆的左右焦点,过斜率为2的直线交椭圆于A,B两点,求(1), 、面积(2)求线段AB中点M的坐标3已知椭圆,过点作一弦,使弦在这点被平分,求此弦所在直线方程。解:(法一)当直线斜率不存在时,点不可能上弦的中点,故可设直线方程为,它与椭圆的交点分别为,则,消去
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年中国单缸花叶定型机市场调查研究报告
- 2024年中国凸边指甲刀市场调查研究报告
- 2025年度XX信息技术咨询合同书模板预览
- 2025年度桉树林木砍伐与林业废弃物资源化利用承包协议3篇
- 电机课程设计
- 2025至2030年中国面板嵌入式积算器行业投资前景及策略咨询研究报告
- 纤维混凝土课程设计
- 水蓄冷课程设计
- 2025版货物运输安全责任及保险理赔合同3篇
- 2025版空压机租赁及智能监控系统安装合同6篇
- 工业项目投资估算及财务评价附表(有计算公式)
- 用所给词的适当形式填空(专项训练)人教PEP版英语六年级上册
- 江苏省常州市2023-2024学年八年级上学期期末道德与法治试题(含答案解析)
- 人教版 五年级上册道德与法治全册各课及单元同步检测试卷【含答案】
- 恒亚水泥厂电工基础试题
- 简易送货单EXCEL打印模板
- 4s店信息员岗位工作职责
- 旋转导向+地质导向+水平井工具仪器介绍
- 无心磨的导轮及心高调整讲解
- 乳腺癌化疗的不良反应级处理ppt课件
- 艾灸疗法(课堂PPT)
评论
0/150
提交评论