《参数方程的概念》上课_第1页
《参数方程的概念》上课_第2页
《参数方程的概念》上课_第3页
《参数方程的概念》上课_第4页
《参数方程的概念》上课_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1第二讲第二讲 参数方程参数方程1、参数方程的概念:、参数方程的概念: 如图如图,一架救援飞机在离灾区地面一架救援飞机在离灾区地面500m高处以高处以100m/s的速度作水平直线飞行的速度作水平直线飞行. 为使投放救援物资准确落于灾为使投放救援物资准确落于灾区指定的地面区指定的地面(不记空气阻力不记空气阻力),飞行员应如何确定投放飞行员应如何确定投放时时机呢?时时机呢?提示:提示:即求飞行员在离救援点的水平距离即求飞行员在离救援点的水平距离多远时,开始投放物资?多远时,开始投放物资?救援点救援点投放点投放点31、参数方程的概念:、参数方程的概念:xy500o物资投出机舱后,它的运动由下列两种运

2、动合成:物资投出机舱后,它的运动由下列两种运动合成:(1)沿)沿ox作初速为作初速为100m/s的匀速直线运动;的匀速直线运动;(2)沿)沿oy反方向作自由落体运动。反方向作自由落体运动。 如图如图,一架救援飞机在离灾区地面一架救援飞机在离灾区地面500m高处以高处以100m/s的速度作水平直线飞行的速度作水平直线飞行. 为使投放救援物资准确落于灾为使投放救援物资准确落于灾区指定的地面区指定的地面(不记空气阻力不记空气阻力),飞行员应如何确定投放飞行员应如何确定投放时机呢?时机呢?4xy500o0,y 令10.10 .ts得100 ,1010 .xtxm代入得.1010 所m以,飞行员在离救援

3、点的水平距离约为时投放物资,可以使其准确落在 指定位置 txy解:物资出舱后,设在时刻 ,水平位移为 , 垂直高度为 ,所以2100 ,1500.2xtygt)2(g=9.8m/s1、参数方程的概念:、参数方程的概念: 如图如图,一架救援飞机在离灾区地面一架救援飞机在离灾区地面500m高处以高处以100m/s的速度作水平直线飞行的速度作水平直线飞行. 为使投放救援物资准确落于灾为使投放救援物资准确落于灾区指定的地面区指定的地面(不记空气阻力不记空气阻力),飞行员应如何确定投放飞行员应如何确定投放时机呢?时机呢?5一、方程组有一、方程组有3个变量,其中的个变量,其中的x,y表示点的表示点的坐标,

4、变量坐标,变量t叫做参变量,而且叫做参变量,而且x,y分别是分别是t的的函数。函数。二、由物理知识可知,物体的位置由时间二、由物理知识可知,物体的位置由时间t唯唯一决定,从数学角度看,这就是点一决定,从数学角度看,这就是点M的坐标的坐标x,y由由t唯一确定,这样当唯一确定,这样当t在允许值范围内连在允许值范围内连续变化时,续变化时,x,y的值也随之连续地变化,于是的值也随之连续地变化,于是就可以连续地描绘出点的轨迹。就可以连续地描绘出点的轨迹。三、平抛物体运动轨迹上的点与满足方程组三、平抛物体运动轨迹上的点与满足方程组的有序实数对(的有序实数对(x,y)之间有一一对应关系。)之间有一一对应关系

5、。6( ),( ).xf tyg t(2)并且对于并且对于t的每一个允许值的每一个允许值, 由方程组由方程组(2) 所确定的点所确定的点M(x,y)都在这条曲线上都在这条曲线上, 那么方程那么方程(2) 就叫做这条曲线的就叫做这条曲线的参数方程参数方程, 联系变数联系变数x,y的变数的变数t叫做参变数叫做参变数, 简称参数简称参数. 相对于参数方程而言,直接给出点的坐标间关系相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。的方程叫做普通方程。关于参数几点说明:关于参数几点说明: 参数是联系变数参数是联系变数x,y的桥梁的桥梁,参数方程中参数可以是有物理意义参数方程中参数可以是有物

6、理意义, 几何意义几何意义, 也可以没有明也可以没有明显意义。显意义。2.同一曲线选取参数不同同一曲线选取参数不同, 曲线参数方程形式也不一样曲线参数方程形式也不一样1. 3.在实际问题中要确定参数的取值范围在实际问题中要确定参数的取值范围1、参数方程的概念:、参数方程的概念: 一般地一般地, 在平面直角坐标系中在平面直角坐标系中,如果曲线上任意一点的如果曲线上任意一点的坐标坐标x, y都是某个变数都是某个变数t的函数的函数7例例1: 已知曲线已知曲线C的参数方程是的参数方程是 (1)判断点)判断点M1(0, 1),M2(5, 4)与曲线与曲线C的位置关系;的位置关系;(2)已知点)已知点M3

7、(6, a)在曲线在曲线C上上, 求求a的值。的值。23 ,()21.xttyt为参数 一架救援飞机以一架救援飞机以100m/s的速度作水平直线飞行的速度作水平直线飞行.在离灾在离灾区指定目标区指定目标1000m时投放救援物资(不计空气阻力时投放救援物资(不计空气阻力,重重力加速力加速 g=10m/s)问此时飞机的飞行高度约是多少?问此时飞机的飞行高度约是多少?(精确到(精确到1m)变式变式:82、方程、方程 所表示的曲线上一点的坐标是所表示的曲线上一点的坐标是( ) 练习1sin,(cosxy为参数)A、(、(2,7););B、 C、 D、(、(1,0) 1 2( , );3 31 1( ,

8、 );2 21、曲线、曲线 与与x轴的交点坐标是轴的交点坐标是( )A、(、(1,4););B、 C、 D、21,(43xttyt 为参数)25(,0);16(1, 3);25(,0);16B9 已知曲线已知曲线C的参数方程是的参数方程是 点点M(5,4)在该在该 曲线上曲线上. (1)求常数)求常数a; (2)求曲线)求曲线C的普通方程的普通方程.212 ,().xttyat 为参数,aR解解:(1)由题意可知由题意可知: 1+2t=5at2=4解得解得:a=1t=2 a=1(2)由已知及由已知及(1)可得可得,曲线曲线C的方程为的方程为: x=1+2t y=t2由第一个方程得由第一个方程得

9、: 12xt代入第二个方程得代入第二个方程得: 21() ,2xy2(1)4xy为所求.训练2:10思考题:思考题:动点动点M作等速直线运动作等速直线运动, 它在它在x轴和轴和y轴方向的轴方向的速度分别为速度分别为5和和12 , 运动开始时位于点运动开始时位于点P(1,2), 求点求点M的的轨迹参数方程。轨迹参数方程。解:设动点M (x,y) 运动时间为t,依题意,得tytx12251所以,点M的轨迹参数方程为tytx12251参数方程求法参数方程求法: (1)建立直角坐标系)建立直角坐标系, 设曲线上任一点设曲线上任一点P坐标为坐标为(x,y) (2)选取适当的参数)选取适当的参数(3)根据

10、已知条件和图形的几何性质)根据已知条件和图形的几何性质, 物理意义物理意义, 建立点建立点P坐标与参数的函数式坐标与参数的函数式(4)证明这个参数方程就是所由于的曲线的方程)证明这个参数方程就是所由于的曲线的方程11小结:小结: 一般地,在平面直角坐标系中,一般地,在平面直角坐标系中,如果曲线上任意一点的坐标如果曲线上任意一点的坐标x,y都是某个变数都是某个变数t的函数的函数 ( ),( ).xf tyg t(2)并且对于并且对于t的每一个允许值,由方程组(的每一个允许值,由方程组(2)所确定的点)所确定的点M(x,y)都在这条曲线上,都在这条曲线上, 那么方程(那么方程(2)就叫做这条曲线的

11、)就叫做这条曲线的参数方程参数方程, 系变数系变数x,y的变数的变数t叫做参变数,简称参数。叫做参变数,简称参数。122、圆的参数方程、圆的参数方程13yxorM(x,y)0M14)()(sincossin,cos),(速圆周运动的时刻质点作匀有明确的物理意义程。其中参数的圆的参数方,半径为这就是圆心在原点为参数即角函数的定义有:,那么由三,设,那么,坐标是转过的角度是,点如果在时刻trOttrytrxrytrxtrOMtyxMMt15转过的角度。的位置时,到逆时针旋转绕点的几何意义是其中参数的圆的参数方程,半径为这也是圆心在原点为参数为参数,于是有,也可以取考虑到00)(sincosOMOM

12、OOMrOryrxt16圆的参数方程的一般形式圆的参数方程的一般形式么样的呢?的圆的参数方程又是怎半径为那么,圆心在点普通方程是的参数方程,它对应的以上是圆心在原点的圆ryxoryx),(,002222220000cos()s()()inxxyxxryyyrr对应的普通方程为为参数17由于选取的参数不同,圆有不同的参由于选取的参数不同,圆有不同的参数方程,一般地,同一条曲线,可以数方程,一般地,同一条曲线,可以选取不同的变数为参数,因此得到的选取不同的变数为参数,因此得到的参数方程也可以有不同的形式,形式参数方程也可以有不同的形式,形式不同的参数方程,它们表示不同的参数方程,它们表示 的曲线可

13、的曲线可以是相同的,另外,在建立曲线的参以是相同的,另外,在建立曲线的参数参数时,要注明参数及参数的取值数参数时,要注明参数及参数的取值范围。范围。18例、例、已知圆方程已知圆方程x x2 2+y+y2 2 +2x-6y+9=0 +2x-6y+9=0,将它,将它化为参数方程。化为参数方程。解:解: x x2 2+y+y2 2+2x-6y+9=0+2x-6y+9=0化为标准方程,化为标准方程, (x+1x+1)2 2+ +(y-3y-3)2 2=1=1,参数方程为参数方程为sin3cos1yx(为参数为参数)19例例2 如图,圆如图,圆O的半径为的半径为2,P是圆上的动点,是圆上的动点,Q(6,0)是是x轴上的定点,轴上的定点,M是是PQ的中点,当点的中点,当点P绕绕O作匀速圆周运动时,求点作匀速圆周运动时,求点M的轨迹的参数方的轨迹的参数方程。程。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论