第39讲排列、组合、二项式定理_第1页
第39讲排列、组合、二项式定理_第2页
第39讲排列、组合、二项式定理_第3页
第39讲排列、组合、二项式定理_第4页
第39讲排列、组合、二项式定理_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、普通高中课程标准实验教科书一数学人教版高三新数学第一轮复习教案(讲座39)排列、组合、二项式定理一. 课标要求:1 分类加法计数原理、分步乘法计数原理通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征, 选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题;2 .排列与组合通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式, 并能解决简单的实际问题;3 .二项式定理能用计数原理证明二项式定理;会用二项式定理解决与二项展开式有关的简单问题。二. 命题走向本部分内容主要包括分类计数原理、分步计数原理、排列与组合、二项式定理三部 分;考查内容:(1

2、)两个原理;(2)排列、组合的概念,排列数和组合数公式,排列和 组合的应用;(3)二项式定理,二项展开式的通项公式,二项式系数及二项式系数和。排列、组合不仅是高中数学的重点内容,而且在实际中有广泛的应用,因此新高考 会有题目涉及;二项式定理是高中数学的重点内容,也是高考每年必考内容,新高考会 继续考察。考察形式:单独的考题会以选择题、填空题的形式出现,属于中低难度的题目,排 列组合有时与概率结合出现在解答题中难度较小,属于高考题中的中低档题目; 预测2007年高考本部分内容一定会有题目涉及,出现选择填空的可能性较大,与概率相结合的解 答题出现的可能性较大。三. 要点精讲1 排列、组合、二项式知

3、识相互关系表两亍羣本原理)1排列:二项式定理2 两个基本原理(1)分类计数原理中的分类;(2)分步计数原理中的分步; 正确地分类与分步是学好这一章的关键。3 排列(1 )排列定义,排列数(2)排列数公式:系An1n!(n - m)!=n (n_ 1) ( m+1);(3) 全排列列:A: =n!;(4) 记住下列几个阶乘数:1 ! =1, 2! =2, 3! =6, 4! =24 , 5! =120, 6! =720;4 组合(1) 组合的定义,排列与组合的区别;(2)组合数公式:n!n(n -1)(n - m 1)m!(n _ m)!m (m -1) :- 2 1(3)组合数的性质Cnm=C

4、nn-m ; rCnr=n Cn-1r-1 ; Cn0+Cn1+- +c::=2 Cn0-Cn1+- +(-1)nCnn=0 ,即 Cn°+Cn2+Cn4+二咛 + 碁=2 ;5 .二项式定理(1) 二项式展开公式:(a+b) n=Cn 0an+Cn1an-1 b+ +Cnkan-kbk+ +Cnnbn;(2 )通项公式:二项式展开式中第k+1项的通项公式是:Tk+1=Cnkan-kbk ;6 .二项式的应用(1) 求某些多项式系数的和;(2 )证明一些简单的组合恒等式;(3)证明整除性。求数的末位;数的整除性及求系数;简单多项式的整除问 题;(4 )近似计算。当|x|充分小时,我们

5、常用下列公式估计近似值: (1+x)n 1+nx (1+x)n 1+nx+n( 1) x2; (5)证明不等式。四. 典例解析题型1 :计数原理例1 .完成下列选择题与填空题(1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有种。A . 81B . 64C . 24D . 4(2 )四名学生争夺三项冠军,获得冠军的可能的种数是()A . 81B . 64C . 24D . 4(3)有四位学生参加三项不同的竞赛, 每位学生必须参加一项竞赛,则有不同的参赛方法有 ; 每项竞赛只许有一位学生参加,则有不同的参赛方法有 ; 每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加,则不同的参赛

6、方法有。解析:(1)完成一件事是“分步”进行还是“分类”进行,是选用基本原理的关键。 将“投四封信”这件事分四步完成,每投一封信作为一步,每步都有投入三个不同信箱 的三种方法,因此: N=3 X 3 X 3X 3=34=81,故答案选 A。本题也可以这样分类完成,四封信投入一个信箱中,有C31种投法;四封信投入两个信箱中,有 c32 ( C41 a22+c42 c22)种投法;四圭寸信投入三个信箱,有两圭寸信在 同一信箱中,有 C42 A 33 种投法,故共有 C31+C32 (C41 A22+C42C22) +C42 A 33=81 (种)。 故选A。(2)因学生可同时夺得 n项冠军,故学生

7、可重复排列,将 4名学生看作4个“店”, 3项冠军看作“客”,每个“客”都可住进 4家“店”中的任意一家,即每个“客”有 4 种住宿法。由分步计数原理得: N=4 X 4X 4=64。故答案选B。(3学生可以选择项目,而竞赛项目对学生无条件限制, 所以类似(1)可得N=34=81 (种); 竞赛项目可以挑学生,而学生无选择项目的机会,每一项可以挑4种不同学生,共有 N=43=64 (种); 等价于从4个学生中挑选3个学生去参加三个项目的竞赛,每人参加一项,故共 有 C43 A 33=24 (种)。例2 . ( 06江苏卷)今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有

8、种不同的方法(用数字作答)。解析:本题考查排列组合的基本知识,由题意可知,因同色球不加以区分,实际上是一个组合问题,共有 C; C; C33 =1260 o点评:分步计数原理与分类计数原理是排列组合中解决问题的重要手段,也是基础方法,在高中数学中,只有这两个原理,尤其是分类计数原理与分类讨论有很多相通之处,当遇到比较复杂的问题时,用分类的方法可以有效的将之化简,达到求解的目的。题型2 :排列问题例3. (1) (06北京卷)在1,2,3,4,5这五个数字组成的没有重复数字的三位数中, 各位数字之和为奇数的共有()(A) 36 个(B) 24 个(C) 18 个(D) 6 个(2)(06福建卷)

9、从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有()(A) 108 种(B) 186 种(C) 216 种(D) 270 种(3)(06湖南卷)在数字1,2, 3与符号+,五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是()A . 6B. 12C. 18D. 24(4) (06重庆卷)高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是()(A) 1800(B) 3600(C) 4320(D) 5040解析:(1)依题意,所选的三位数字有两种情况:(1) 3个数字都

10、是奇数,有 A3种方法(2)3个数字中有一个是奇数,有 c3a3,故共有a3 + c3a3 = 24种方法,故选b;(2) 从全部方案中减去只选派男生的方案数,合理的选派方案共有a3-A3=186种, 选B ;(3) 先排列1 , 2, 3,有A3 =6种排法,再将“ + ” , “”两个符号插入,有 陽=2 种方法,共有12种方法,选B ;(4)不同排法的种数为 a5a2 = 3600,故选B。点评:合理的应用排列的公式处理实际问题,首先应该进入排列问题的情景,想清楚我处理时应该如何去做。例4. ( 1) ( 06天津卷)用数字0, 1 , 2, 3, 4组成没有重复数字的五位数,则其中数字

11、1 , 2相邻的偶数有 个(用数字作答);(2) (06上海春)电视台连续播放 6个广告,其中含4个不同的商业广告和 2个不同的公益广告,要求首尾必须播放公益广告,则共有 种不同的播放方式(结果用数值表示)解析:(1)可以分情况讨论: 若末位数字为0,则1, 2,为一组,且可以交换位 置,3, 4,各为1个数字,共可以组成 2 A =12个五位数; 若末位数字为2,则1 与它相邻,其余 3个数字排列,且 0不是首位数字,则有 2 A2 4个五位数; 若末 位数字为4,则1, 2,为一组,且可以交换位置,3, 0,各为1个数字,且0不是首位数字,则有2 (2 A2) =8个五位数,所以全部合理的

12、五位数共有24个。(2)分二步:首尾必须播放公益广告的有 A22种;中间4个为不同的商业广告有 A44 种,从而应当填 A22 A44= 48.从而应填48。点评:排列问题不可能解决所有问题,对于较复杂的问题都是以排列公式为辅助。题型三:组合问题例5.( 1) (06重庆卷)将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有()(A ) 3 0 种(B) 9 0 种(C)180 种(D ) 2 7 0 种(2) (06天津卷)将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有(A . 10

13、 种B . 20 种C . 36 种D . 52 种解析:(1 )将5名实习教师分配到高一年级的3个班实习,每班至少 1名,最多2C1 c2名,则将5名教师分成三组,一组 1人,另两组都是2人,有C5 2 4 =15种方法,再将A33组分到3个班,共有15 A3 =90种不同的分配方案,选 B;(2 )将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,分情况讨论:1号盒子中放1个球,其余3个放入2号盒子,有C: =4种方法;1号盒子中放2个球,其余2个放入2号盒子,有C4 =6种方法;则不同的放球方法有10种,选A。点评:计数原理是解决较为

14、复杂的排列组合问题的基础,应用计数原理结合例6. (1) (06陕西卷)某校从8名教师中选派4名教师同时去4个边远地区支教(每 地1人),其中甲和乙不同去,则不同的选派方案共有 种;(2) ( 06全国II) 5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同 的分派方法共有()(A) 150种(B)180 种(C)200 种(D)280 种解析:(1 )可以分情况讨论,甲去,则乙不去,有 c3 a4 =480种选法;甲不去,乙去,有C; A4 =480种选法;甲、乙都不去,有A4=360种选法;共有1320种不同的选派方案;CCS(2)人数分配上有1,2,2与1,1,3两种方式,若

15、是1,2,2,则有A2= 60种,若是1,1,3,则有A=90种,所以共有150种,选A。点评:排列组合的交叉使用可以处理一些复杂问题,诸如分组问题等; 题型4 :排列、组合的综合问题例7 平面上给定10个点,任意三点不共线,由这 10个点确定的直线中,无三条直 线交于同一点(除原 10点外),无两条直线互相平行。求: (1 )这些直线所交成的点的 个数(除原10点外)。(2)这些直线交成多少个三角形。解法一:(1 )由题设这10点所确定的直线是 C102=45条。这45条直线除原10点外无三条直线交于同一点,由任意两条直线交一个点,共有C452个交点。而在原来10点上有9条直线共点于此。所以

16、,在原来点上有10C92点被重复计数;所以这些直线交成新的点是:C45 10C92=630。(2)这些直线所交成的三角形个数可如下求:因为每个三角形对应着三个顶点,这三个点来自上述 630个点或原来的10个点。所以三角形的个数相当于从这640个点中任取三个点的组合,即 C6403=43486080 (个)。解法二:(1)如图对给定的10点中任取4个点,四点连成6条直线,这6条直线交 3个新的点。故原题对应于在10个点中任取4点的不同取法的3倍,即这些直线新交成的点的个数是:3C104=630。(2)同解法一。点评:用排列、组合解决有关几何计算问题,除了应用排列、组合的各种方法与对 策之外,还要

17、考虑实际几何意义。例8.已知直线ax+by+c=0中的a,b,c是取自集合 3, 2, 1,0,1,2,3中的3个不同 的元素,并且该直线的倾斜角为锐角,求符合这些条件的直线的条数。解 设倾斜角为B ,由B为锐角,得tanB =- >0,即a、b异号。b(1 )若c=0, a、b各有3种取法,排除2个重复(3x-3y=0,2x-2y=0,x-y=0 ),故有3 X 3-2=7 (条);(2)若cm0, a有3种取法,b有3种取法,而同时c还有4种取法,且其中任两 条直线均不相同,故这样的直线有 3X 3X 4=36条,从而符合要求的直线共有7+36=43条;点评:本题是1999年全国高中

18、数学联赛中的一填空题,据抽样分析正确率只有0.37。错误原因没有对 c=0与cm 0正确分类;没有考虑 c=0中出现重复的直线。题型5 :二项式定理例9. ( 1)(湖北卷)在(x -31 )24的展开式中,x的幕的指数是整数的项共有A . 3项B . 4项C. 5项D . 6项(2) (.x -扌)10的展开式中含x的正整数指数幕的项数是(A) 0( B) 2( C) 4( D) 6解析:本题主要考查二项式展开通项公式的有关知识;X彳72- 4r(1) Tr+L C;4X24-r(- 31 )r二(-1) rC;4xF,当 r = 0, 3, 6, 9, 12, 15, 18,21, 24

19、时,x 的指数分别是 24, 20, 16, 12, 8, 4, 0, - 4, - 8,其中 16, 8, 4, 0, 8均为2的整数次幕,故选 C;怎丄0< 3x丿的展开式通项为3rcdx)r(3r 9冷)10尸,因此含的正整数次幕的项共有 2项.选B ;点评:多项式乘法的进位规则。在求系数过程中,尽量先化简,降底数的运算级别 ,尽量化成加减运算, 在运算过程可以适当注意令值法的运用, 例如求常数项,可令X = 0 . 在二项式的展开式中,要注意项的系数和二项式系数的区别。例10. (1) ( 06江西卷)在(x、2 ) 2006的二项展开式中,含 x的奇次幕的项之和为S,当x =、

20、2时,S等于()"C 3008A.23009C.23009D. 2的展开式中第三项与第五项的系数之比为一3142 其中i = 1,则展开式中常数项是()(A) 45i(B) 45i(C) 45(D)45(3) (06浙江卷)若多项式x2X10=a0a1(x1) 亠a9(x1)2a10(x1)10,则a9二()(A)9(B)10(C) 9(D) 10解析:(1 )设(x i.2 ) 2006 = ax2006 + a1x2005 + + a20O5X + a2006;则当 x=、2 时,有 a()(、2 ) 2006 + 玄1 (、. 2 ) 2005 + + a2005 (2 ) +

21、 a20°6 = 0 (1),当 x = 、2 时,有 ag (叩2 ) 2006 a1 (苛2 ) 2005 + 一a2oo5 (、2 ) + a2oo6= 23009 ( 2),(1) ( 2)有 a1 ( 、, 2 ) 2005+- + a2005 ( '、2 ) = 23009一:一2= 23008,,故选 B ;(2)第三项的系数为一cn;,第五项的系数为C4,由第三项与第五项的系数之比为A (Cj + Cn% +Cn"1) ( . ab )n40_5r(1)(a、b x|x是正实数,n N)(2)已知a、b为正数,且n n i n 2n n+1(a+b)

22、 -a -b > 2-2。1 1+=1,则对于n N有a b14 可得门=10,则 Tr =C10(x2)10_r-)r = (iJcIoX 2 ,令 40- 5r = 0,解得 r=8,故所求的常数项为(-Cl。= 45,选A ;(3)令 x -2,得 a0 ai a2-a9 a10= 22 210,令 x = 0 ,得a0 - a1 - a2 :卜川a9 - a10 =0 ;点评:本题考查二项式展开式的特殊值法,基础题;题型6 :二项式定理的应用例11.证明下列不等式:证明:a+b(1 )令 a=x+ S , b=x - S ,贝U x=n nnna +b =(x+ S ) +(x-

23、 S )n 1 n-1n n n 1 n-1n n n=x +Cn x S +, +C n S +x -Cn X S +, (-1) Cn Sn 2 n-2、=2(x +Cn x S+Cn4xn-4(2) (a+b)n=an+Cn1an-1b+, +Cnnbnn . n1. n-1n n(a+b) =b +Cn b a+, +Cn a上述两式相加得:2(a+b) n=(a n+b n)+Cn1 (an-1 b+bn-1 a)+, +Cnk(an-kbk+bn-kak)+, +Cnn(an+bn)(*)1 1 + =1,且a、b为正数a b ab=a+b> 2 ab 二 ab> 4又

24、/ an-kbk+bn-kak>2,an bn =2(,ab )n(k=1,2, ,n-1) 2(a+b) n>2an+2bn+CnS( . ab)n+Cn22 (- ab ) n+, +Cnn-12( ab)n(a+b)n an-bnA (2n 2) 2n=22n 2n+1点评:利用二项式定理的展开式, 中的换元法称之为均值换元(对称换元)可以证明一些与自然数有关的不等式问题。题(1)。这样消去3奇数次项,从而使每一项均大于或等于零。题(2)中,由由称位置二项式系数相等,将展开式倒过来写再与原来的展开式 相加,这样充分利用对称性来解题的方法是利用二项式展开式解题的常用方法。例12

25、 . (1 )求4X 6n+5n+1被20除后的余数;(2) 7n + Cn17n-1+Cn2 严 +, +Cnn-1 X 7 除以 9,得余数是多少?(3) 根据下列要求的精确度,求1.025的近似值。精确到0.01 :精确到0.001。解析:(1 )首先考虑4 6n+5n+1被4整除的余数。 5n+1=(4+1)n+1=4n+1+Cn+114n+Cn+124n-1 + , +Cn+1n 4+1 ,其被4整除的余数为1,被20整除的余数可以为1 , 5, 9, 13, 17,然后考虑4 6n+1+5n+1被5整除的余数。 4 6n=4 (5+1)n=4(5n+Cn1 5n-1+Cn2 5n-2+, +常-1 5+1),被5整除的余数为4,其被20整除的余数可以为 4, 9, 14, 19。综上所述,被20整除后的余数为(2) 7n+Cn1 7n-1+Cn2 7n-2+, =(7+1) 1=8 1=(9-1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论