



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、三视图命题规律总结三视图是从三个不同视角反映出的图形信息,每个视角都只能反映几何体的局部信息,并且随着几何体、几何体放置位置等条件的改变,视图也在改变,所以从开发学生空间想象能力的角度出发,三视图在高中课本中出现以来,一直是高考的“宠儿”.本文通过例题来探索高考中三视图的命题规律.一、几何体结构定性识别例1如图, abc为正三角形,/ / , 平面abc 且3= =ab,则多面体abc -的正视图(也称主视图)是( )解析:对照几何体来画它的三视图,本题从外向内看,看到ab、这六条线,被遮挡,画为虚线,c的投影为ab的中点,故答案为d.点评:对照直观图
2、、实物模型画出三视图,这类问题是三视图问题中的基础题,解答时要注重实物模型的引导作用,关键要把握住几何体的属性,只有这样才有可能正确的描述几何体的三视图.模拟1下图是一个球体与一个圆台的组合体,则此组合体的俯视图可能是( )a.(2)(3)(5) b.(1)(3)(5) c.(1)(2)(3)(5) d.(2)(3)(4)(5)提示:当组合体上部球的半径大于圆台下底面圆的半径时,组合体的俯视图为(3);当组合体上部球的半径等于圆台下底面圆的半径时,组合体的俯视图为(5);当组合体上部球的半径小于圆台下底面圆的半径时,组合体的俯视图为(2);组合体的俯视图不可能为(1)(4),故选a.二、几何体
3、直观图与三视图的转化例2一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为( ) 解析:本题主要是确定去掉的小长方体在原长方体什么位置.解题时先要把三视图转化为直观图,再由直观图转化到三视图.其实只要根据正视图就可以发现长方体是去掉左上角靠近前面的一个小长方体,由左视图可以进一步确认该几何体的俯视图为选项c. 小结:“对应位置对比看,联想比照视图看”,几何体中的元素在三视图中都会有所体现,三视图中表现几何体同一元素的部分,就是此元素在几何体中的对应位置.由三视图确定直观图时先注意三个视图的共性,联想几何体的大致形状,再由三视图的差异,确定几何
4、体;由直观图画三视图时,注意寻找对应位置,先联想三视图的某一部分,再由“长对正、高平齐、宽相等”的原理对比确定联想是否正确.模拟2已知三棱锥的俯视图与侧视图如右,俯视图是边长为2的正三角形,侧视图是有一直角边为2的直角三角形,则该三棱锥的正视图可能为 ( ) 22俯视图侧视图1122211111122a b c d提示:根据三视图间的关系知,该三棱锥的底面是边长为的正三角形,外侧面是直角边为的等腰直角三角形,且外侧面垂直于底面故选c.三、几何体的性质例3如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为 .解析:由多面体的三视图知,该多面体是一
5、个四棱锥pabcd,如图所示,底面是一个边长为2的正方形,pa底面abcd,且pa=2,那么pc就是所求的最长的一条棱,而ac=2,那么pc=2;侧视图正视图俯视图1121小结:解决三视图问题时,要能根据三视图准确提炼出几何体中的线线关系、线面关系、面面位置关系,以及各种关键的长度数据对于一些常见的几何体,要熟悉它的三视图和简单几何性质.模拟3四棱柱abcda1b1c1d1的三视图如图所示:则下列命题正确的是 (把所有正确命题的序号都填上);.提示:由三视图可知四棱柱abcda1b1c1d1直观图如图所示,所以,正确;因为,所以,又因为四边形cd为正方形,所以,可得所以,正确;在下底面梯形中容
6、易算出,故正确;,所以,正确.正确命题的序号为.四、几何体的面积和体积例4若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是( )a.cm3 b.cm3c.cm3 d.cm3解析:由三视图知该几何体是一个上面是长方体、下面为正四棱台的组合体,对应的长方体长、宽、高分别为4、4、2,正四棱台的上底边长为4,下底边长为8,高为2,那么相应的体积.小结:此类问题在高考中考查最为频繁,是三视图这一热点中的热点,解答的关键是由三视图想象出这个几何体的构成,画出其直观图.模拟4一个装修工人用14个边长为1的正方体,他在地面上把它们摆成如图所示的形式,然后他把露出的表面都涂上颜色,那么他涂色的总共
7、面积为 .提示:法一:直接求解;法二:利用三视图 分别画出该组合体的三视图如下:根据三视图可知其露出的表面积为().主视图俯视图左视图五、立体几何知识综合运用例5一个多面体的直观图和三视图(正视图、左视图、俯视图)如图所示,m、n分别为a1b、b1c1的中点.求证:(1)mn平面acc1a1;(2)mn平面a1bc;(3)求多面体a1b1bc的体积.解析:(1)证明:由三视图可得:为直三棱柱,底面是直角三角形,连结 中,分别是的中点 而,(2)证明:, (3)解:.小结:立体几何的主要问题就是平行垂直的定性判断与角、距离、体积、表面积的定量运算,在三视图这一知识背景下,把这些问题糅合在一起考查,较好的体现了新课标的精神,但不管怎样,随着新课改的进一步推进,各个省市对三视图的考查将会稳定于以上五种形式.模拟5已知长方体的一条体对角线长为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年江西省南昌县莲塘第一中学高一物理第二学期期末考试模拟试题含解析
- 2025年陕西省延安市延川县中学物理高二第二学期期末统考模拟试题含解析
- 统编版2025届高二物理第二学期期末教学质量检测模拟试题含解析
- 2025年双鸭山市重点中学物理高一第二学期期末调研试题含解析
- 宠物日常护理课件大全
- 二零二五版高端商务空间设计施工协议书
- 2025版动画电影编剧聘用及创意开发合同
- 2025年度车床租赁与维护保养服务全面协议
- 二零二五年紧急救援搬运服务免责合同范本
- 二零二五年度重型货车挂靠运输合同协议书
- 工程管理办法实施细则
- 低年级语文识字教学课件
- 钢筋桁架式楼板施工方案钢筋混凝土
- 医师执业注册变更聘用证明
- 七升八数学知识点讲义(八年级初二数学暑假衔接班)
- 测量工具使用精品课件
- 双排扣件式钢管落地脚手架施工方案(2)
- 心电监护课件精品PPT课件
- 湖北环境监测服务收费标准
- (高清版)JGJ340-2015建筑地基检测技术规范
- 220KV架线放紧线施工技术交底
评论
0/150
提交评论