版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、南昌大学 20082009学年第一学期期末考试试卷 试卷编号: 教77 ( a )卷课程编号: 课程名称: 复变函数与积分变换 考试形式: 闭卷 适用班级: 工科类 姓名: 学号: 班级: 学院: 专业: 考试日期: 题号一二三四五六七八九十总分累分人 签名题分151570 100得分考生注意事项:1、本试卷共 6页,请查看试卷中是否有缺页或破损。如有立即举手报告以便更换。 2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。一、 填空题(每空 3 分,共 15 分) 得分评阅人 1设,则imz 。2.方程lnz=的解为 。3设c为正向圆周|z|=1,则 。4幂级数的收敛半径为 。5. 奇
2、点类型是 。第 2 页 共 36页二选择题(每题 3 分,共 15 分)得分评阅人 1复数的辐角为 ()a.arctan b-arctan c-arctan d+arctan2.设z=cosi,则 ()aimz=0 brez= c|z|=0 dargz=3设函数f(z)=,则f(z)等于 ()a b c d4设q(z)在点z=0处解析,,则resf(z),0等于()aq(0) bq(0) cq(0)dq(0) 5是函数f(z)=的 ( )a 一级极点b可去奇点c一级零点d本性奇点三计算题(每题10 分,共 70 分)得分评阅人 1. 求的共轭调和函数v(x,y),并使v(0,0)1。2求其中c
3、为不经过z=-1的任意简单闭曲线,n为整数。3. 试求函数f(z)=在点z=0处的泰勒级数,并指出其收敛区域。4. 利用留数计算积分dz,其中c为正向圆周: 4.5. 设.6. 将内展开为洛朗级数。7. 若复数的模相等且+=0.证明: 构成等边三角形的三个顶点。复变函数与积分变换试题(一)一、填空(3分×10)1的模 ,幅角 。2-8i的三个单根分别为: , , 。3lnz在 的区域内连续。4的解极域为:。5的导数。6。7指数函数的映照特点是:。8幂函数的映照特点是:。9若=f f(t),则= f 。10若f(t)满足拉氏积分存在条件,则l f(t)=。二、(10分)已知,求函数使函
4、数为解析函数,且f(0)=0。三、(10分)应用留数的相关定理计算四、计算积分(5分×2)1 2 c:绕点i一周正向任意简单闭曲线。五、(10分)求函数在以下各圆环内的罗朗展式。12六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。(2)七、(10分)应用拉氏变换求方程组满足x(0)=y(0)=z(0)=0的解y(t)。八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。复变函数与积分变换试题答案(一)一、1,2.-i2i-i3.z不取原点和负实轴4. 空集5.2z607.将常形域映为角形域8.角形域映为角形域9.10.二、解:(5分)f(0)=0c
5、=0(3分)(2分)三、解:原式=(2分)(2分)=0原式=(2分) =四、1解:原式(3分)z1=0z2=1=0(2分)2解:原式=五、1解:(2分)2解:(1分)(2分)六、1解:(3分)结论成立(2)解:(2分)与1构成傅氏对(2分)七、解:(3分)s(2)-(1):(3分)八、解:定义;c-r充要条件th;v为u的共扼函数10分复变函数与积分变换试题(二)一、填空(3分×10)1函数f(z)在区域d内可导是f(z)在d内解析的()条件。2w=z2在z=-i处的伸缩率为()。3的指数表示式为()。4ln(-1)的主值等于()。5函数ez以()为周期。6设c为简单闭曲线,则=()
6、。7若z0为f(z)的m级极点,则()。8若f f(t)()。9与()构成一个付立叶变换对。10已知l ,则l ()。二、计算题(7分×7)1求p,m,n的值使得函数为解析函数。2计算3已知调和函数,求解析函数使得。4把函数在内展开成罗朗级数。5指出函数在扩充复平面上所有孤立奇点并求孤立奇点处的留数。6计算7利用留数计算积份三、积分变换(7分×3)1 设(为常数),求f f(t)。2设f(t)以为周期,且在一个周期内的表达式为求l f(t)。3求方程满足条件的解。(l e-t=)。 复变函数与积分变换试题答案(二)一、1充要条件2.23.4.5.6.原式=7 8.9.10.
7、二、1.解:(3分)3m=p(1分)2原式=(25分)3原式=(2分)(2分)(2分)(1分)4解:(2分)(2分)(3分)5解:(2分)(2分)(2分)(1分)6解:原式(3分)(1分)7解:原式=(2分)=(1分)=(1分)=(2分)=(1分)三、1解:f f(t)(3分)(4分)2.解:l f(t)=(2分)(2分)=(2分)(1分)=3解:f=fe-t(1分)(2分)=(2分)=(2分)复变函数与积分变换试题(三)1.(5)复数与点对应,请依次写出的代数、几何、三角、指数表达式和的3次方根。2.(6)请指出指数函数、对数函数、正切函数的解析域,并说明它们的解析域是哪类点集。3.(9)讨
8、论函数的可导性,并求出函数在可导点的导数。另外,函数在可导点解析吗?是或否请说明理由。4.(7)已知解析函数的实部,求函数的表达式,并使。5.(6×2)计算积分:(1), 其中为以为圆心,为半径的正向圆周, 为正整数; (2)。6.(5×2)分别在圆环 (1),(2) 内将函数展为罗朗级数。7.(12)求下列各函数在其孤立奇点的留数。(1) ; (2) ; (3) .8.(7)分式线性函数、指数函数、幂函数的映照特点各是什么。9.(6分)求将上半平面 保形映照成单位圆 的分式线性函数。10.(5×2)(1)己知 f,求函数的傅里叶变换;(2)求函数的傅里叶逆变换1
9、1.(5×2)(1)求函数的拉普拉斯变换;(2)求拉普拉斯逆变换l-1。12.(6分)解微积分方程:。复变函数与积分变换试题答案(三)1.(5分)请依次写出的代数、几何、三角、指数表达式和的3次方根。:2. (6分)请指出指数函数、对数函数、正切函数的解析域,并说明它们的解析域是哪类点集。指数函数、对数函数、正切函数的解析域分别为:整个复平面,无界开区域;除去原点及负半实轴,无界开区域,;除去点,无界开区域。3.(9分)讨论函数的可导性,并求出函数在可导点的导数。另外,函数在可导点解析吗?是或否请说明理由。解:,可微所以时函数可导,且。因为函数在可到点的任一邻域均不可导,所以可导点处
10、不解析。4. (6分)已知解析函数的实部,求函数的表达式,并使。解:5.(6×2)计算积分:(1), 其中为以为圆心,为半径的正向圆周, 为正整数; (2)。解 (1)设的方程为,则 所以 (当时) (当时)。(2) .6.(5×2)分别在圆环 (1),(2) 内将函数展为罗朗级数。解:(1) , .(2) , .7. (12)求下列各函数在其孤立奇点的留数。(1) ; (2) ; (3) .解:(1) 为的可去奇点, ;(2) 为的三阶极点, 为的一阶极点, ,;(3) 为的本性奇点, , 。8.(7)分式线性函数、指数函数、幂函数的映照特点各是什么。分式线性函数具有保角
11、性、保圆性、保对称性的映照特点,指数函数具有将带形域映照为角形域的映照特点,幂函数具有将带形域映照带形域的映照特点。9.(6分)求将上半平面 保形映照成单位圆 的分式线性函数。解:10.(5×2)(1)己知 f,求函数的傅里叶变换;(2)求函数的傅里叶逆变换。 解 (1) f, f;(2) f-1f-1,11.(5×2)(1)求函数的拉普拉斯变换;(2)求拉普拉斯逆变换l-1。解 (1) ll;(2)l-1= l-1=l- =l-12l-1 =()。12.(6分)解微积分方程:。解:, 。复变函数与积分变换试题及答案(四)一、填空题:(每题3分 共21分)1的三角表达式 。
12、2 。3设 则 1 。4幂级数的和函数的解析域 空集 。5分式线性函数、指数函数的映照特点分别是: 保角性、保圆性、保对称性、 保伸缩性 , 将带形域映照为角形域 。6若l, 则l 。二、简答题:(每题6分 共18分)1叙述函数在区域内解析的几种等价定义。答 (1)区域内可导,则称在区域内 (2分)(2)若的实部、虚部均为内的可微函数,且柯西黎曼方程成立,则称为在内的解析函数。 (2分)(3)若的虚部为实部的共轭调和函数,则称在区域内解析。 (2分)2若分别为及的阶及阶零点,则在具有什么性质。答 若,则为的阶零点; (2分)若,则为的可去奇点; (2分)若,则为的阶极点; (2分)3叙述将上半
13、平面保形映照为单位圆盘且将映照为的分式线性函数产生的关键步骤。答(1)映照为,映照为,有 (3分)(2)当时,有 (2分)(3)使得映为 (1分)三、计算题:(每题7分 共49分)解 1求的解析点; , , , , 仅在处成立 (5分) 处处不解析。 (2分)2求在时的罗朗级数;解 3求积分 为沿单位圆的左半圆从到的曲线。解 4求积分 。解 5求积分 解 6、求函数的傅里叶变换.解 ff f f 7求函数的拉普拉斯逆变换。解 l-1 四、证明及解方程(每题6分 共12分)1证明:。证明 2解方程:。解 复变函数与积分变换试题及答案(五)一、填空题(每题4分,共20分)1、2、 0 3、幂级数的
14、收敛半径 2 4、5、设,则付氏变换f二、单项选择题(每题4分,共20分)1、是函数的 a 极点, b.本性奇点, c.可去奇点, d.一级零点 【b】2、 函数在复平面上的所有有限奇点处留数的和:a. 1 b. 4 c. 1 d. 2 【a】3、设c为正向圆周,则积分等于a24, b, c.0, d. 【d】4、设,则为.a1, b2, c0, d。 【c】5、设,则拉氏变换l为a, b. , c. ,d. 。 【a】三、解答下列各题(1-2每小题6分,3-6每小题7分,共40分)1、 设是实数,函数在复平面解析,求。解:2、 映射把圆周变成什么曲线?写出曲线的方程。答:变成圆 3、 求积分,其中。解:4、求积分,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年仓储物流代理合作协议详本
- 2024年专用合同:适用于小型工程的建筑施工协议
- 2024年拉萨客运从业资格证考试题技巧及答案
- 产业园区发展现状:房地产调研报告
- 乳酸检测在生物物理学中的应用
- 会展公司配电室操作指南
- 临床特点及治疗分析:感染性疾病
- 企业职业健康传染病上报流程图
- 2024年海运货代项目立项申请报告模范
- 丙泊酚麻醉在皮肤手术中的应用
- 高标准基本农田建设监理工作总结
- 机电安装工程技术专业培训
- 7逆合成分析法与合成路线设计
- 工程材料构配件设备报审表
- 《Monsters 怪兽》中英对照歌词
- 华东地区SMT公司信息
- 隧道弃渣及弃渣场处理方案
- 隔代教育PPT课件
- 签证用完整户口本英文翻译模板
- 金属盐类溶度积表
- 社会工作毕业论文(优秀范文8篇)
评论
0/150
提交评论