版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、三角形难题初中数学组卷一填空题(共2小题)1(2013南京)计算(1)()(1)()的结果是2(2015春织金县期末)若a2+2ka+9是一个完全平方式,则k等于二解答题(共28小题)3(2012重庆模拟)已知:如图,在ABC中,ADBC,1=B求证:ABC是直角三角形4(2015营口)【问题探究】(1)如图1,锐角ABC中分别以AB、AC为边向外作等腰ABE和等腰ACD,使AE=AB,AD=AC,BAE=CAD,连接BD,CE,试猜想BD与CE的大小关系,并说明理由【深入探究】(2)如图2,四边形ABCD中,AB=7cm,BC=3cm,ABC=ACD=ADC=45°,求BD的长(3
2、)如图3,在(2)的条件下,当ACD在线段AC的左侧时,求BD的长5(2015菏泽)如图,已知ABC=90°,D是直线AB上的点,AD=BC(1)如图1,过点A作AFAB,并截取AF=BD,连接DC、DF、CF,判断CDF的形状并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由6(2015于洪区一模)如图1,在ABC中,ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF(1)如果AB=AC,BAC=90°,当点D在线段BC上时(与点B不
3、重合),如图2,线段CF、BD所在直线的位置关系为,线段CF、BD的数量关系为;当点D在线段BC的延长线上时,如图3,中的结论是否仍然成立,并说明理由;(2)如果ABAC,BAC是锐角,点D在线段BC上,当ACB满足什么条件时,CFBC(点C、F不重合),并说明理由7(2015秋南京校级月考)如图,ABC中,ABC=ACB=80°,D、E分别是AB、AC上的点,DCA=30°,EBA=20°,求BED的度数8(2014南京)【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续
4、对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究【初步思考】我们不妨将问题用符号语言表示为:在ABC和DEF中,AC=DF,BC=EF,B=E,然后,对B进行分类,可分为“B是直角、钝角、锐角”三种情况进行探究【深入探究】第一种情况:当B是直角时,ABCDEF(1)如图,在ABC和DEF,AC=DF,BC=EF,B=E=90°,根据,可以知道RtABCRtDEF第二种情况:当B是钝角时,ABCDEF(2)如图,在ABC和DEF,AC=DF,BC=EF,B=E,且B、E都是钝角,求证:ABCDEF第三种情况:当B是锐角时,ABC和DEF不一定全等(3)在ABC和DEF,A
5、C=DF,BC=EF,B=E,且B、E都是锐角,请你用尺规在图中作出DEF,使DEF和ABC不全等(不写作法,保留作图痕迹)(4)B还要满足什么条件,就可以使ABCDEF?请直接写出结论:在ABC和DEF中,AC=DF,BC=EF,B=E,且B、E都是锐角,若,则ABCDEF9(2014绍兴)(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,EAF=45°,延长CD到点G,使DG=BE,连结EF,AG求证:EF=FG(2)如图,等腰直角三角形ABC中,BAC=90°,AB=AC,点M,N在边BC上,且MAN=45°,若BM=1,CN=3,求MN的长10
6、(2014雁塔区校级模拟)阅读下题及证明过程:已知:如图,D是ABC中BC边上一点,E是AD上一点,EB=EC,ABE=ACE,求证:BAE=CAE证明:在AEB和AEC中,EB=EC,ABE=ACE,AE=AE,AEBAEC第一步BAE=CAE第二步问上面证明过程是否正确?若正确,请写出每一步推理的依据;若不正确,请指出错在哪一步,并写出你认为正确的证明过程11(2013东营)(1)如图(1),已知:在ABC中,BAC=90°,AB=AC,直线m经过点A,BD直线m,CE直线m,垂足分别为点D、E证明:DE=BD+CE(2)如图(2),将(1)中的条件改为:在ABC中,AB=AC,
7、D、A、E三点都在直线m上,并且有BDA=AEC=BAC=,其中为任意锐角或钝角请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为BAC平分线上的一点,且ABF和ACF均为等边三角形,连接BD、CE,若BDA=AEC=BAC,试判断DEF的形状12(2013湖州)一节数学课后,老师布置了一道课后练习题:如图,已知在RtABC中,AB=BC,ABC=90°,BOAC于点O,点P、D分别在AO和BC上,PB=PD,DEAC于点E,求证:BPOPDE(1)理清
8、思路,完成解答(2)本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程(2)特殊位置,证明结论若PB平分ABO,其余条件不变求证:AP=CD(3)知识迁移,探索新知若点P是一个动点,点P运动到OC的中点P时,满足题中条件的点D也随之在直线BC上运动到点D,请直接写出CD与AP的数量关系(不必写解答过程)13(2013河南)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中C=90°,B=E=30°(1)操作发现如图2,固定ABC,使DEC绕点C旋转,当点D恰好落在AB边上时,填空:线段DE与AC的位置关系是;设BDC的面积为S1,AEC的
9、面积为S2,则S1与S2的数量关系是(2)猜想论证当DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了BDC和AEC中BC、CE边上的高,请你证明小明的猜想(3)拓展探究已知ABC=60°,点D是角平分线上一点,BD=CD=4,DEAB交BC于点E(如图4)若在射线BA上存在点F,使SDCF=SBDE,请直接写出相应的BF的长14(2013烟台)已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点(1)如图1,当点P与点Q重合时,AE与BF的位置关系是,QE
10、与QF的数量关系式;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明15(2013昭通)已知ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使DAF=60°,连接CF(1)如图1,当点D在边BC上时,求证:BD=CF;AC=CF+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系
11、,并说明理由;(3)如图3,当点D在边CB的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系16(2013涪陵区校级模拟)如图,ADE的顶点D在ABC的BC边上,且ABD=ADB,BAD=CAE,AC=AE求证:BC=DE17(2013南岸区校级模拟)如图,A、C、F、B在同一直线上,AC=BF,AE=BD,且AEBD求证:EFCD18(2013庐阳区校级模拟)如图,将两个全等的直角三角形ABD、ACE拼在一起(图1)ABD不动,(1)若将ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC(2)若将图1中的CE向上平移,C
12、AE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系(3)在(2)中,若CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由19(2013成都校级模拟)如图,点C是线段AB上除A、B外的任意一点,分别以AC、BC为边在线段AB的同旁作等边三角形ACD和等边三角形BEC,连结AE交DC于M,连结BD交CE于N,AE与BD交于F(1)求证:AE=BD;(2)连结MN,仔细观察MNC的形状,猜想MNC是什么三角形?说出你的猜想,并加以证明20(2013秋广州校级期中)在等边ABC的两边AB、AC所在直线上分别有两点M、N
13、,D为ABC外一点,且MDN=60°,BDC=120°,BD=DC探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及AMN的周长Q与等边ABC的周长L的关系(1)如图1,ABC是周长为9的等边三角形,则AMN的周长Q=;(2)如图2,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是;此时=;(3)点M、N在边AB、AC上,且当DMDN时,猜想(2)问的两个结论还成立吗?写出你的猜想并加以证明21(2012广元)如图,在AEC和DFB中,E=F,点A、B、C、D在同一直线上,有如下三个关系式:AEDF,AB=CD,CE=BF
14、(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果、,那么”)(2)选择(1)中你写出的一个命题,说明它正确的理由22(2012河源)如图,已知AB=CD,B=C,AC和BD相交于点O,E是AD的中点,连接OE(1)求证:AOBDOC;(2)求AEO的度数23(2012山西)问题情境:将一副直角三角板(RtABC和RtDEF)按图1所示的方式摆放,其中ACB=90°,CA=CB,FDE=90°,O是AB的中点,点D与点O重合,DFAC于点M,DEBC于点N,试判断线段OM与ON的数量关系,并说明理由探究展示:小宇同学展
15、示出如下正确的解法:解:OM=ON,证明如下:连接CO,则CO是AB边上中线,CA=CB,CO是ACB的角平分线(依据1)OMAC,ONBC,OM=ON(依据2)反思交流:(1)上述证明过程中的“依据1”和“依据2”分别是指:依据1:;依据2:(2)你有与小宇不同的思考方法吗?请写出你的证明过程拓展延伸:(3)将图1中的RtDEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程24(2012长春)感知:如图,点E在正方形ABCD
16、的边BC上,BFAE于点F,DGAE于点G,可知ADGBAF(不要求证明)拓展:如图,点B、C分别在MAN的边AM、AN上,点E、F在MAN内部的射线AD上,1、2分别是ABE、CAF的外角已知AB=AC,1=2=BAC,求证:ABECAF应用:如图,在等腰三角形ABC中,AB=AC,ABBC点D在边BC上,CD=2BD,点E、F在线段AD上,1=2=BAC若ABC的面积为9,则ABE与CDF的面积之和为25(2012烟台)(1)问题探究如图1,分别以ABC的边AC与边BC为边,向ABC外作正方形ACD1E1和正方形BCD2E2,过点C作直线KH交直线AB于点H,使AHK=ACD1作D1MKH
17、,D2NKH,垂足分别为点M,N试探究线段D1M与线段D2N的数量关系,并加以证明(2)拓展延伸如图2,若将“问题探究”中的正方形改为正三角形,过点C作直线K1H1,K2H2,分别交直线AB于点H1,H2,使AH1K1=BH2K2=ACD1作D1MK1H1,D2NK2H2,垂足分别为点M,ND1M=D2N是否仍成立?若成立,给出证明;若不成立,说明理由如图3,若将中的“正三角形”改为“正五边形”,其他条件不变D1M=D2N是否仍成立?(要求:在图3中补全图形,注明字母,直接写出结论,不需证明)26(2012沈阳)已知,如图,MON=60°,点A,B为射线OM,ON上的动点(点A,B不
18、与点O重合),且AB=4,在MON的内部,AOB的外部有一点P,且AP=BP,APB=120°(1)求AP的长;(2)求证:点P在MON的平分线上(3)如图,点C,D,E,F分别是四边形AOBP的边AO,OB,BP,PA的中点,连接CD,DE,EF,FC,OP当ABOP时,请直接写出四边形CDEF的周长的值;若四边形CDEF的周长用t表示,请直接写出t的取值范围27(2012邵阳)如图所示,AC、BD相交于点O,且OA=OC,OB=OD求证:ADBC28(2012开县校级模拟)已知,如图ABC中,ABC=45°,CDAB于D,BE平分ABC,且BEAC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G求证:(1)BF=AC;(2)CE=BF29(2012昌平区模拟)(1)如图,在四边形ABCD中,AB=AD,B=D=90°,E、F分别是边BC、CD上的点,且EAF=BAD求证:EF=BE+FD;(2)如图,在四边形ABCD中,AB=AD,B+D=180°,E、F分别是边BC、CD上的点,且EAF=BAD,(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高校与企业合作协议教授聘请合同范本3篇
- 2025版木门企业安全生产责任书合同范本2篇
- 2025年分期付款运动服装合同
- 2025年分期室内设计服务合同
- 跨国集团2025年度全球营销战略合同2篇
- 2025年版个人汽车买卖合同示范文本3篇
- 2025年汽车配件赠与协议
- 二零二五年敬老院养老用品销售与售后服务合同规范3篇
- 2025版教育培训机构合作协议样本3篇
- 2025版学生实训基地实习就业保障服务合同3篇
- 《社会工作实务》全册配套完整课件3
- 单位违反会风会书检讨书
- 2024年4月自考00832英语词汇学试题
- 《电力用直流电源系统蓄电池组远程充放电技术规范》
- 《哪吒之魔童降世》中的哪吒形象分析
- 信息化运维服务信息化运维方案
- 汽车修理厂员工守则
- 公安交通管理行政处罚决定书式样
- 10.《运动技能学习与控制》李强
- 冀教版数学七年级下册综合训练100题含答案
- 1神经外科分级护理制度
评论
0/150
提交评论