版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2014-2015学年山东省潍坊市重点中学高三(上)12月段考数学试卷(理科)一、选择题:本题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,恰有一项是符合题目要求的,把正确答案涂在答题卡上.1设集合a=x|x|1,b=x|log2x0,则ab=()a x|1x1b x|0x1c x|1x1d x|0x12下列说法正确的是()a 命题“若x=2,则x2=4”的否命题为“若x24,则x2”b 命题“xr,x2+x10”的否定是“xr,x2+x10”c “x=y”是“sinx=siny”的充分不必要条件d 命题“若x=0或y=0,则xy=0”的逆否命题为“若xy0,则x0或y0”3如
2、图所示,则阴影部分的面积为()a b c d 4已知a=,b=log2,c=log,则()a abcb acbc cbad cab5函数f(x)=1+log2x与g(x)=2x+1在同一直角坐标系下的图象大致是()a b c d 6设m、n是两条不同的直线,、是两个不同的平面,则下面四个命题中正确的个数是()( i)若mn,m,n,则n;( ii)若m,则m;( iii)若m,则m;( iv)若mn,m,n,则a 1b 2c 3d 47如图,平行四边形abcd中,ab=2,ad=1,a=60°,点m在ab边上,且am=ab,则等于()a 1b 1c d 8若a,b0,直线l:ax+b
3、y+1=0始终平分圆m:x2+y2+4x+2y+1=0的周长,则+的最小值为()a b 3c 5d 99已知抛物线y2=2px(p0)的焦点f与双曲的右焦点重合,抛物线的准线与x轴的交点为k,点a在抛物线上且,则a点的横坐标为()a b 3c d 410已知定义在r上的奇函数f(x),设其导函数为f(x),当x(,0时,恒有xf(x)f(x),令f(x)=xf(x),则满足f(3)f(2x1)的实数x的取值范围是()a (2,1)b (1,)c (,2)d (1,2)二、填空题:(本大题共5小题,每小题5分,共25分,把答案直接填在横线上)11等比数列an的各项均为正数,且a1a5=4,则lo
4、g2a1+log2a2+log2a3+log2a4+log2a5=12设点p是双曲线=1(a0,b0)与圆x2+y2=a2+b2在第一象限的交点,其中f1,f2分别是双曲线的左、右焦点,若tanpf2f1=3,则双曲线的离心率为13已知p(x,y)满足约束条件,则x2y的最大值是14定义a*b=,则函数f(x)=1*3x的值域是15定义|=a1a4a2a3,若函数f(x)=|,给出下列四个命题:f(x)在区间,上是减函数;f(x)关于(,0)中心对称;y=f(x)的表达式可改写成y=cos(2x)1;由f(x1)=f(x2)=0可得x1x2必是的整数倍;其中正确命题的序号是三、解答题:(本大题
5、6小题,共75分,解答写出文字说明,证明过程或演算步骤)16已知abc的周长为+1,且sina+sinb=sinc(i)求边ab的长;()若abc的面积为sinc,求角c的度数17设命题p:函数f(x)=lg的定义域是r;命题q:不等式3x9xa对一切正实数x均成立(1)如果p是真命题,求实数a的取值范围;(2)如果“p或q”为真命题,命题“p且q”为假命题,求实数a的取值范围18已知四棱锥pabcd及其三视图如下图所示,e是侧棱pc上的动点()求四棱锥pabcd的体积;()不论点e在何位置,是否都有bdae?试证明你的结论;()若点e为pc的中点,求二面角daeb的大小19已知数列an的前n
6、项和为sn,且sn=2an2,数列bn满足b1=1,且bn+1=bn+2(1)求数列an,bn的通项公式;(2)设cn=,求数列cn的前2n项和t2n20已知倾斜角为60°的直线l过点(0,2)和椭圆c:+=1(ab0)的右焦点,且椭圆的离心率为()求椭圆c的方程; ()若已知点d(3,0),点m,n是椭圆c上不重合的两点,且=,求实数的取值范围21已知函数f(x)=lnx+()若函数f(x)在1,+)上为增函数,求正实数a的取值范围;()当a=1时,函数g(x)=f(x)m在,2上有两个零点,求实数m的取值范围;()当a=1时,求证:对大于1的任意正整数n,+lnn恒成立2014-
7、2015学年山东省潍坊市重点中学高三(上)12月段考数学试卷(理科)参考答案与试题解析一、选择题:本题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,恰有一项是符合题目要求的,把正确答案涂在答题卡上.1设集合a=x|x|1,b=x|log2x0,则ab=()a x|1x1b x|0x1c x|1x1d x|0x1考点:对数函数的单调性与特殊点;交集及其运算专题:函数的性质及应用分析:解绝对值不等式求得a,解对数不等式求得b,再根据两个集合的交集的定义求得ab解答:解:集合a=x|x|1=x|1x1,b=x|log2x0=x|0x1,则ab=x|0x1,故选:b点评:本题主要考查绝
8、对值不等式的解法,对数不等式的解法,求两个集合的交集,属于基础题2下列说法正确的是()a 命题“若x=2,则x2=4”的否命题为“若x24,则x2”b 命题“xr,x2+x10”的否定是“xr,x2+x10”c “x=y”是“sinx=siny”的充分不必要条件d 命题“若x=0或y=0,则xy=0”的逆否命题为“若xy0,则x0或y0”考点:命题的真假判断与应用专题:简易逻辑分析:a利用否命题的定义即可判断出正误;b利用命题的否定定义即可判断出正误;c由“x=y”“sinx=siny”,反之不成立,例如取x=,y=,即可判断出;d利用逆否命题的定义即可判断出正误解答:解:a命题“若x=2,则
9、x2=4”的否命题为“若x2,则x24”,因此不正确;b命题“xr,x2+x10”的否定是“xr,x2+x10”,因此不正确;c由“x=y”“sinx=siny”,反之不成立,例如取x=,y=,因此“x=y”是“sinx=siny”的充分不必要条件,正确;d“若x=0或y=0,则xy=0”的逆否命题为“若xy0,则x0且y0”,因此不正确故选:c点评:本题考查了简易逻辑的判定方法,考查了推理能力,属于基础题3如图所示,则阴影部分的面积为()a b c d 考点:定积分在求面积中的应用专题:计算题;导数的概念及应用分析:由题意,s=,求出原函数,即可得出阴影部分的面积解答:解:由题意,s=故选:
10、d点评:本题考查阴影部分的面积,考查定积分知识的运用,确定原函数是关键4已知a=,b=log2,c=log,则()a abcb acbc cbad cab考点:对数的运算性质专题:计算题;综合题分析:利用指数式的运算性质得到0a1,由对数的运算性质得到b0,c1,则答案可求解答:解:0a=20=1,b=log2log21=0,c=log=log23log22=1,cab故选:d点评:本题考查指数的运算性质和对数的运算性质,在涉及比较两个数的大小关系时,有时借助于0、1这样的特殊值能起到事半功倍的效果,是基础题5函数f(x)=1+log2x与g(x)=2x+1在同一直角坐标系下的图象大致是()a
11、 b c d 考点:函数的图象专题:函数的性质及应用分析:根据函数f(x)=1+log2x与g(x)=2x+1解析式,分析他们与同底的指数函数、对数函数的图象之间的关系,(即如何变换得到),分析其经过的特殊点,即可用排除法得到答案解答:解:f(x)=1+log2x的图象是由y=log2x的图象上移1而得,其图象必过点(1,1)故排除a、b,又g(x)=21x=2(x1)的图象是由y=2x的图象右移1而得故其图象也必过(1,1)点,及(0,2)点,故排除d故选c点评:本题主要考查对数函数和指数函数图象的平移问题,属于容易题6设m、n是两条不同的直线,、是两个不同的平面,则下面四个命题中正确的个数
12、是()( i)若mn,m,n,则n;( ii)若m,则m;( iii)若m,则m;( iv)若mn,m,n,则a 1b 2c 3d 4考点:平面与平面之间的位置关系专题:常规题型分析:对各项依次加以判断:根据垂直于同一直线的平面和直线之间的位置关系,得到(i)正确;根据线面平行的判定定理,结合已知条件,通过举反例得到(ii)错误;根据垂直于同一个平面的直线与平面的位置关系,得到(iii)错误;根据线面垂直和线线垂直的性质,再结合面面垂直的判定定理,得到(iv)正确解答:解:对于(i),若mn和m同时成立,说明n或n再结合已知条件n,得n成立,故(i)正确;对于(ii),因为,设它们的交线为n,
13、若、外的直线mn,则满足m且m,但m不成立,故(ii)错;对于 (iii),若m,说明m或m当m时直线m就不能成立因此可得 (iii)错误;对于( iv),根据mn,m,得到n或n不论是n还是n,都可结合n,得到故(iv)正确因此正确的命题是(i)(iv),共两个故选b点评:本题以空间的平行与垂直为载体,考查了命题的真假的判断,属于基础题着重考查空间直线与平面、平面与平面的位置关系,考查了空间想象的能力7如图,平行四边形abcd中,ab=2,ad=1,a=60°,点m在ab边上,且am=ab,则等于()a 1b 1c d 考点:向量在几何中的应用;平面向量数量积的运算专题:计算题分析
14、:由题意可得,代入=()()=,整理可求解答:解:am=ab,ab=2,ad=1,a=60°,=()()=1+×4=1故选b点评:本题主要考查了向量得数量积的基本运算、向量的加法的应用,属于向量知识的简单应用8若a,b0,直线l:ax+by+1=0始终平分圆m:x2+y2+4x+2y+1=0的周长,则+的最小值为()a b 3c 5d 9考点:基本不等式专题:不等式的解法及应用分析:由于直线l:ax+by+1=0始终平分圆m:x2+y2+4x+2y+1=0的周长,可得直线l经过圆心m(2,1),2a+b=1再利用“乘1法”、基本不等式的性质即可得出解答:解:直线l:ax+b
15、y+1=0始终平分圆m:x2+y2+4x+2y+1=0的周长,直线l经过圆心m(2,1),2ab+1=0,即2a+b=1a,b0,+=(2a+b)=5+5+2×=9,当且仅当a=b=时取等号+的最小值为9故选:d点评:本题考查了“乘1法”、基本不等式的性质、圆的性质,考查了推理能力与计算能力,属于基础题9已知抛物线y2=2px(p0)的焦点f与双曲的右焦点重合,抛物线的准线与x轴的交点为k,点a在抛物线上且,则a点的横坐标为()a b 3c d 4考点:圆锥曲线的共同特征专题:压轴题;圆锥曲线的定义、性质与方程分析:根据双曲线得出其右焦点坐标,可知抛物线的焦点坐标,从而得到抛物线的方
16、程和准线方程,进而可求得k的坐标,设a(x0,y0),过a点向准线作垂线ab,则b(3,y0),根据|ak|=|af|及af=ab=x0(3)=x0+3,进而可求得a点坐标解答:解:双曲线,其右焦点坐标为(3,0)抛物线c:y2=12x,准线为x=3,k(3,0)设a(x0,y0),过a点向准线作垂线ab,则b(3,y0)|ak|=|af|,又af=ab=x0(3)=x0+3,由bk2=ak2ab2得bk2=ab2,从而y02=(x0+3)2,即12x0=(x0+3)2,解得x0=3故选b点评:本题主要考查了抛物线的简单性质考查了学生对抛物线基础知识的熟练掌握10已知定义在r上的奇函数f(x)
17、,设其导函数为f(x),当x(,0时,恒有xf(x)f(x),令f(x)=xf(x),则满足f(3)f(2x1)的实数x的取值范围是()a (2,1)b (1,)c (,2)d (1,2)考点:函数的单调性与导数的关系;导数的运算专题:函数的性质及应用;导数的综合应用分析:根据函数的奇偶性和条件,判断函数f(x)的单调性,利用函数的奇偶性和单调性解不等式即可解答:解:f(x)是奇函数,不等式xf(x)f(x),等价为xf(x)f(x),即xf(x)+f(x)0,f(x)=xf(x),f(x)=xf(x)+f(x),即当x(,0时,f(x)=xf(x)+f(x)0,函数f(x)为减函数,f(x)
18、是奇函数,f(x)=xf(x)为偶数,且当x0为增函数即不等式f(3)f(2x1)等价为f(3)f(|2x1|),|2x1|3,32x13,即22x4,1x2,即实数x的取值范围是(1,2),故选:d点评:本题主要考查函数单调性和导数之间的关系的应用,根据函数的奇偶性和单调性之间的关系,是解决本题的关键,综合考查了函数性质的应用二、填空题:(本大题共5小题,每小题5分,共25分,把答案直接填在横线上)11等比数列an的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=5考点:等比数列的性质;对数的运算性质;等比数列的前n项和专题:等差数列与等
19、比数列分析:可先由等比数列的性质求出a3=2,再根据性质化简log2a1+log2a2+log2a3+log2a4+log2a5=5log2a3,代入即可求出答案解答:解:log2a1+log2a2+log2a3+log2a4+log2a5=log2a1a2a3a4a5=log2a35=5log2a3又等比数列an中,a1a5=4,即a3=2故5log2a3=5log22=5故选为:5点评:本题考查等比数列的性质,灵活运用性质变形求值是关键,本题是数列的基本题,较易12设点p是双曲线=1(a0,b0)与圆x2+y2=a2+b2在第一象限的交点,其中f1,f2分别是双曲线的左、右焦点,若tanp
20、f2f1=3,则双曲线的离心率为考点:双曲线的简单性质专题:圆锥曲线的定义、性质与方程分析:先由双曲线定义和已知求出两个焦半径的长,再由已知圆的半径为半焦距,知焦点三角形为直角三角形,从而由勾股定理得关于a、c的等式,求得离心率解答:解:圆x2+y2=a2+b2的半径r=c,f1f2是圆的直径,f1pf2=90°依据双曲线的定义:|pf1|pf2|=2a,又在rtf1pf2中,tanpf2f1=3,即|pf1|=3|pf2|,|pf1|=3a,|pf2|=a,在直角三角形f1pf2中由(3a)2+a2=(2c)2,得e=故答案为:点评:本题考查了双曲线的定义,双曲线的几何性质,离心率
21、的求法,属于中档题13已知p(x,y)满足约束条件,则x2y的最大值是1考点:简单线性规划专题:计算题;不等式的解法及应用分析:作出题中不等式组表示的平面区域,得如图的abc及其内部,再将目标函数z=x2y对应的直线进行平移,可得当x=1且y=0时,z取得最大值解答:解:作出不等式组表示的平面区域,得到如图的abc及其内部,其中a(1,0),b(2,1),c(1,2)设z=f(x,y)=x2y,将直线l:z=x2y进行平移,观察x轴上的截距变化,可得当l经过点a时,目标函数z达到最大值z最大值=f(1,0)=1故答案为:1点评:本题给出二元一次不等式组,求目标函数的最值,着重考查了二元一次不等
22、式组表示的平面区域和简单的线性规划等知识,属于基础题14定义a*b=,则函数f(x)=1*3x的值域是(0,1考点:函数的值域专题:函数的性质及应用分析:为了求函数f(x)=1*3x的值域,先将其化成分段函数的形式,再画出其图象,最后结合图象即得函数值的取值范围,即可得到数f(x)=1*3x的值域解答:解:解:当13x时,即x0时,函数y=1*3x=1当13x时,即x0时,函数y=1*3x=3xf(x)=,画出函数图象,如图示:作出函数的图象,由图知,函数y=1*3x的值域为:(0,1故答案为:(0,1点评:本题以新定义的形式,考查了函数值域的问题,属于基础题遇到函数创新应用题型时,处理的步骤
23、一般为:根据“让解析式有意义”的原则,先确定函数的定义域;再化简解析式,求函数解析式的最简形式,并分析解析式与哪个基本函数比较相似;根据定义域和解析式画出函数的图象根据图象分析函数的性质15定义|=a1a4a2a3,若函数f(x)=|,给出下列四个命题:f(x)在区间,上是减函数;f(x)关于(,0)中心对称;y=f(x)的表达式可改写成y=cos(2x)1;由f(x1)=f(x2)=0可得x1x2必是的整数倍;其中正确命题的序号是考点:三角函数中的恒等变换应用;正弦函数的图象专题:三角函数的图像与性质;平面向量及应用分析:由三角函数中的恒等变换应用化简函数解析式可得f(x)=sin(2x+)
24、1,由2k+2x+2k+,kz可解得f(x)的单调递减区间,即可判断;由于解得f()=1,故不是函数的对称中心;由2x+=(2x+),由诱导公式即可证明命题正确;根据函数的周期t=,函数值等于0的x之差的最小值为,所以x1x2必是的整数倍,即可判断解答:解:f(x)=|=2sinxcosx2sin2x=sin(2x+)1,由2k+2x+2k+,kz可解得f(x)的单调递减区间为:k,k,kz,故当k=0时,f(x)在区间,上是减函数,命题正确;由于f()=sin(2×+)1=1,故命题错误;由于f(x)=sin(2x+)1=cos(2x+)1=cos(2x)1,故命题正确;因为函数的
25、周期t=,函数值等于0的x之差的最小值为,所以x1x2必是的整数倍所以命题错误故答案为:点评:本题主要考查了平面向量及应用,三角函数的图象与性质,三角函数中的恒等变换应用,属于基本知识的考查三、解答题:(本大题6小题,共75分,解答写出文字说明,证明过程或演算步骤)16已知abc的周长为+1,且sina+sinb=sinc(i)求边ab的长;()若abc的面积为sinc,求角c的度数考点:正弦定理;余弦定理专题:计算题分析:(i)先由正弦定理把sina+sinb=sinc转化成边的关系,进而根据三角形的周长两式相减即可求得ab(2)由abc的面积根据面积公式求得bcac的值,进而求得ac2+b
26、c2,代入余弦定理即可求得cosc的值,进而求得c解答:解:(i)由题意及正弦定理,得ab+bc+ac=+1bc+ac=ab,两式相减,得:ab=1()由abc的面积=bcacsinc=sinc,得bcac=,ac2+bc2=(ac+bc)22acbc=2=,由余弦定理,得,所以c=60°点评:本题主要考查了正弦定理、三角形的面积计算等相关知识此类问题要求大家对正弦定理、余弦定理、面积公式要熟练掌握,并能运用它们灵活地进行边与角的转化,解三角形问题也是每年高考的一个重点,但难度一般不大,是高考的一个重要的得分点17设命题p:函数f(x)=lg的定义域是r;命题q:不等式3x9xa对一
27、切正实数x均成立(1)如果p是真命题,求实数a的取值范围;(2)如果“p或q”为真命题,命题“p且q”为假命题,求实数a的取值范围考点:命题的真假判断与应用专题:综合题分析:(1)由题意,若p是真命题,则对任意实数都成立,由此能够求出p是真命题时,实数a的取值范围(2)若命题q为真命题时,则3x9xa对一切正实数x均成立由(,0),知q是真命题时,a0再由p或q为真命题,命题p且q为假命题,知或,能求出实数a的取值范围解答:解:(1)由题意,若p是真命题,则对任意实数都成立,若a=0,显然不成立;若a0,解得a2故如果p是真命题时,实数a的取值范围是(2,+)(2)若命题q为真命题时,则3x9
28、xa对一切正实数x均成立x03x13x9x(,0)所以如果q是真命题时,a0又p或q为真命题,命题p且q为假命题所以命题p与q一真一假或解得0a2综上所述,实数a的取值范围是0,2点评:本题考查命题的真假判断和应用,解题时要注意公式的灵活运用18已知四棱锥pabcd及其三视图如下图所示,e是侧棱pc上的动点()求四棱锥pabcd的体积;()不论点e在何位置,是否都有bdae?试证明你的结论;()若点e为pc的中点,求二面角daeb的大小考点:二面角的平面角及求法;棱柱、棱锥、棱台的体积专题:空间位置关系与距离;空间角分析:(i)由三视图知pc面abcd,abcd为正方形,且pc=2,ab=bc
29、=1,由此能求出四棱锥pabcd的体积(ii)不论点e在何位置,都有bdae由已知得pcbd,从而bd面ace,由此能证明bdae(iii)连接ac,交bd于o由对称性,二面角daeb是二面角oaeb的2倍,设为二面角oaeb的平面角注意到b在面ace上的射影为o,由,能求出二面角daeb的大小解答:解:(i)由三视图知pc面abcd,abcd为正方形,且pc=2,ab=bc=1,(4分)(ii)不论点e在何位置,都有bdae证明如下:pc面abcd,bd面abcd,pcbd而bdac,acae=a,bd面ace,而ae面ace,bdae(7分)(iii)连接ac,交bd于o由对称性,二面角d
30、aeb是二面角oaeb的2倍,设为二面角oaeb的平面角注意到b在面ace上的射影为o,=60°二面角daeb是120°(12分)点评:本试题主要考查了立体几何中的线面的垂直,以及二面角的求解的综合运用19已知数列an的前n项和为sn,且sn=2an2,数列bn满足b1=1,且bn+1=bn+2(1)求数列an,bn的通项公式;(2)设cn=,求数列cn的前2n项和t2n考点:数列递推式;数列的求和专题:计算题分析:(1)当n=1,可求a1,n2时,an=snsn1可得an与an1的递推关系,结合等比数列的通项公式可求an,由bn+1=bn+2,可得bn是等差数列,结合等差
31、数列的通项公式可求bn(2)由题意可得,然后结合等差数列与等比数列的求和公式,利用分组求和即可求解解答:解:(1)当n=1,a1=2; (1分)当n2时,an=snsn1=2an2an1,an=2an1(2分)an是等比数列,公比为2,首项a1=2,(3分)由bn+1=bn+2,得bn是等差数列,公差为2(4分)又首项b1=1,bn=2n1(6分)(2)(8分)+3+7+(4n1)=(10分)= (12分)点评:本题主要考查了等差数列、等比数列的通项公式的应用及求和公式的应用,体现了分类讨论思想的应用20已知倾斜角为60°的直线l过点(0,2)和椭圆c:+=1(ab0)的右焦点,且椭圆的离心率为()求椭圆c的方程; ()若已知点d(3,0),点m,n是椭圆c上不重合的两点,且=,求实数的取值范围考点:椭圆的简单性质专题:平面向量及应用;直线与圆;圆锥曲线的定义、性质与方程分析:()由直线的斜率公式,求得直线l的方程,可得椭圆的焦点,再由离心率公式,可得a,b,进而得到椭圆方程;(ii)设直线mn的方程为x=ay+3,代入椭圆方程,运用判别式大于0,韦达定理,由向量的共线的坐标表示,得到的不等式,解得即可得到所求范围解答:解:(i)直线l的倾斜角为60°直线l的斜率为k=tan60°=,又直线l过点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024司机聘用合同
- 挖掘机租赁市场合同样本
- 2024年房屋经纪服务合同
- 2024竞价房屋买卖合同范本
- 江苏省徐州市七年级上学期语文期中试卷5套【附答案】
- 2024【股权投资信托合同】股权投资合同
- 施工安全协议书案例分析
- 专业咨询委托协议参考
- 房屋买卖合同协议书委托人2024年
- 标准的汽车租赁合同范本
- 总公司与分公司合并报表编制举例
- 概率论与数理统计(茆诗松)第二版课后第二章习题参考答案_百度
- 锦纶染色过程的问题与解决方法
- 土地租金发放表
- 出租车计价器系统设计摘要和目录
- 医院水电安装施工方案
- 计算机网络考试重点整理
- 水泥搅拌桩机械进场安装验收记录表
- 高一物理的必修的一期中考试试卷解析告
- 网络通信类visio图库
- 四年级英语上册Unit4第四课时教案人教PEP标准版
评论
0/150
提交评论