数字图像处理10 纹理分析new_第1页
数字图像处理10 纹理分析new_第2页
数字图像处理10 纹理分析new_第3页
数字图像处理10 纹理分析new_第4页
数字图像处理10 纹理分析new_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 纹纹 理理 分分 析析 第第 九九 章章遥感信息工程学院1 9.1、引言 9.2、统计法 9.3、自相关函数方法 9.4、傅立叶频谱分析法 9.5、灰度共生矩阵法 9.6、纹理的句法结构分析法第九章 纹理分析 纹纹 理理 分分 析析 第第 九九 章章遥感信息工程学院29.1 引言 一、 纹理特征 纹理(Tuxture)一词最初指纤维物的外观。字典中对纹理的定义是“由紧密的交织在一起的单元组成的某种结构”。习惯上,把图像中这种局部不规则的,而图像中这种局部不规则的,而宏观有规律的特性称之为宏观有规律的特性称之为纹理纹理。因此,纹理是由一个具有一定的不变性的视觉基元,通称纹理基元,在给定区域内的

2、不同位置上,以不同的形变及不同的方向重复地出现的一种图纹。 人工纹理是某种符号的有序排列, 这些符号可以是线条、点、字母等,是有规则的。自然纹理是具有重复排列现象的自然景象,如砖墙、森林、草地等图案,往往是无规则的。 纹纹 理理 分分 析析 第第 九九 章章遥感信息工程学院39.1 引言 砖墙、布、云、动物皮毛、乱草、树叶常见纹理图案: 纹纹 理理 分分 析析 第第 九九 章章遥感信息工程学院49.1 引言 (a)(b)图: 人工纹理与自然纹理(a) 人工纹理; (b)自然纹理 纹纹 理理 分分 析析 第第 九九 章章遥感信息工程学院59.1 引言 二、 纹理分析方法 1、统计分析方法 凭人们

3、的直观影响,即从图像有关属性的统计分析 出发,统计纹理特征。 2、结构分析方法 从图像结构的观点出发,则认为纹理是结构。纹理 分析应该采用句法结构方法,力求找出纹理基元,再 从结构组成探索纹理的规律或直接去探求纹理构成的 结构规律。三、 纹理描述和度量方法 1、统计法 2、结构法 3、频谱法 纹纹 理理 分分 析析 第第 九九 章章遥感信息工程学院6统计法是利用灰度直方图的矩来描述纹理的,可分为灰度差分统计法和行程长度统计法。1. 1. 灰度差分统计法灰度差分统计法 设(x, y)为图像中的一点,该点与和它只有微小距离的点(x+x, y+y)的灰度差值为 ),(),(),(yyxxgyxgyx

4、g g称为灰度差分。设灰度差分的所有可能取值共有m级,令点(x, y)在整个画面上移动,累计出g(x, y)取各个数值的次数, 由此便可以作出g(x, y)的直方图。由直方图可以知道g(x, y)取值的概率p(i)。 当采用较小i值的概率p(i)较大时,说明纹理较粗糙;概率较平坦时,说明纹理较细。 9.2 统计法 纹纹 理理 分分 析析 第第 九九 章章遥感信息工程学院7该方法采用以下参数描述纹理图像的特征: iipiCON)(2(2) 角度方向二阶矩: iipASM2)((3) 熵: iipipENT)(lg)((4)平均值: iiipmMEAN)(1 在上述公式中,p(i)较平坦时(纹理较

5、细), ASM较小,ENT较大;若p(i)分布在原点附近,则MEAN值较小。 (1) 对比度:9.2 统计法 纹纹 理理 分分 析析 第第 九九 章章遥感信息工程学院82. 2. 行程长度统计法行程长度统计法 设点(x , y)的灰度值为g,与其相邻点的灰度值也可 能为g, 统计出从任一点出发沿方向上连续n个点都 具有灰度值g这种情况发生的概率,记为p(g, n )。在 同一方向上具有相同灰度值的像素个数称为行程长度。 由p(g, n)可以定义出能够较好描述纹理特征的如下参 数: (1) 长行程加重法: ngngngpngpnLRE,2),(),(9.2 统计法当行程长时,LRE大。 纹纹 理

6、理 分分 析析 第第 九九 章章遥感信息工程学院9(2) 灰度值分布: nggnngpngpGLD,2),(),((3)行程长度分布: nggnngpngpRLD,),(),((4)行程比: 2,),(NngpRPGng式中,N2为像素总数。 9.2 统计法当灰度行程等分布时,GLD最小;若某些灰度出现多,即灰度较均匀,则GLD大。 当灰度各行程均匀,则RLD小,反之像素灰度行程长短不均匀,则RLD大。 纹纹 理理 分分 析析 第第 九九 章章遥感信息工程学院10 纹理常用它的粗糙性来描述。例如,在相同的观看条件下, 毛料织物要比丝织品粗糙。粗糙性的大小与局部结构的空间重复周期有关,周期大的纹

7、理粗,周期小的纹理细。这种感觉上的粗糙与否不足以定量纹理的测度,但可说明纹理测度变化倾向。即小数值的纹理测度表示细纹理,大数值纹理测度表示粗纹理。 用空间自相关函数作纹理测度的方法如下: 9.3 自相关函数方法设图像为f (m, n),自相关函数可由下式定义: wkwknwjwjmwkwknwjwjmnmfnmfnmfkjC2),(),(),(),( 纹纹 理理 分分 析析 第第 九九 章章遥感信息工程学院11 上式是对(2w+1)(2w+1)窗口内的每一个像素点(j ,k)与偏离值为, =0, 1, 2, , T的像素之间的相关值进行计算。一般纹理区对给定偏离(, )时的相关性要比细纹理区高

8、,因而纹理粗糙性与自相关函数的扩展成正比。自相关函数扩展的一种测度是二阶矩, 即: ),(),(22kjCkjTkTjT9.3 自相关函数方法 纹理粗糙性越大则T就越大。 纹纹 理理 分分 析析 第第 九九 章章遥感信息工程学院12付立叶功率谱纹理分析法的基本思想:付立叶变换:dxdyvyuxjyxfvuF2exp, vuFvuFvuF,*2功率谱: 功率谱的径向分布与图像f(x,y)空间域中的纹理的粗细程度有关。对于稠密的细纹理,功率谱沿径向的分布比较分散;对于稀疏的粗纹理,功率谱往往比较集中于原点附近;对于有方向性的纹理,功率谱的分布将偏置于与纹理垂直的方向上。9.4 傅立叶频谱分析法 纹

9、理图像傅立叶功率谱 纹纹 理理 分分 析析 第第 九九 章章遥感信息工程学院13 频谱法借助于傅立叶频谱的频率特性来描述周期的或近乎周期的二维图像模式的方向性。常用的三个性质是: (1) 傅立叶频谱中突起的峰值对应纹理模式的主方向; (2) 这些峰在频域平面的位置对应模式的基本周期; (3) 如果利用滤波把周期性成分除去, 剩下的非周期性部分可用统计方法描述。 0(a)S()(b)0S()229.4 傅立叶频谱分析法 纹纹 理理 分分 析析 第第 九九 章章遥感信息工程学院14 实际检测中,为简便起见可把频谱转化到极坐标系中, 此时频谱可用函数S(r, )表示,如上图所示。对每个确定的方向,

10、S(r, )是一个一维函数S(r);对每个确定的频率r,S(r, )是一个一维函数Sr()。对给定的,分析S(r)得到的频谱沿原点射出方向的行为特性;对给定的r,分析Sr()得到的频谱在以原点为中心的圆上的行为特性。如果把这些函数对下标求和可得到更为全局性的描述,即 )()(0rSrS)()(1RrrSS式中,R是以原点为中心的圆的半径。 9.4 傅立叶频谱分析法 纹纹 理理 分分 析析 第第 九九 章章遥感信息工程学院15 S(r)和S()构成整个图像或图像区域纹理频谱能量的描述。图(a)、 (b) 给出了两个纹理区域和频谱示意图,比较两条频谱曲线可看出两种纹理的朝向区别,还可从频谱曲线计算

11、它们的最大值的位置等。 纹理和对应的频谱示意图 0(a)S()(b)0S()229.4 傅立叶频谱分析法 纹纹 理理 分分 析析 第第 九九 章章遥感信息工程学院16 灰度共生矩阵法(联合概率矩阵法)是对图像的所有像素进行统计调查,以便描述其灰度分布的一种方法。此方法是图像灰度的二阶统计量,是一种对纹理的统计分析方法。 灰度共生矩阵 p(d,) 定义为从灰度为i的点离开某个固定的位置(相距d,方向为)的点上灰度为j的概率。往往适当地选择d,而 则取0,45,90,135度。 9.5 灰度共生矩阵法09045135dddddd 纹纹 理理 分分 析析 第第 九九 章章遥感信息工程学院17 设f(

12、x,y)为一幅二维数字图象,其大小为MN,灰度级别为Ng,则满足一定空间关系的灰度共生矩阵为 P(i,j)=#(x1,y1),(x2,y2)MNf(x1,y1)=i,f(x2,y2)=j其中#(x)表示集合x中的元素个数,显然P为NgNg的矩阵,若(x1,y1)与(x2,y2)间距离为d,两者与坐标横轴的夹角为,则可以得到各种间距及角度的灰度共生矩阵P(i,j,d,)。9.5 灰度共生矩阵法 纹纹 理理 分分 析析 第第 九九 章章遥感信息工程学院18例:例:已知图像(a),当d=1时计算灰度共生矩阵 p(1,0), p(1,45), p(1,90), p(1,135)。解:解:根据灰度共生矩

13、阵的定义,对图像中个像素点进行统计,统计相距为d,方位为的点上灰度值为i和j的像素对的数目#i,j如下式:统计得4个灰度共生矩阵为:9.5 灰度共生矩阵法 3 , 3#2 , 3#1 , 3#0 , 3#3 , 2#2 , 2#1 , 2#0 , 2#3 , 1#2 , 1#1 , 1#0 , 1#3 , 0#2 , 0#1 , 0#0 , 0#),(dP)(3322222011001100 a002100160100420124 01350100142002210014 0900200222202400206 0450200201301210312 纹纹 理理 分分 析析 第第 九九 章章遥

14、感信息工程学院19 由此可见,d,取不同的数值组合,可以得到不同情况下的灰度共生矩阵。 当d 取值较小时,对应于变化缓慢的纹理图像(较细的纹理),其灰度共生矩阵对角线上的数值较大;而纹理的变化越快,则对角线上的数值越小,而对角线两侧上的元素值增大。 灰度共生矩阵并不能直接提供纹理信息,为了能描述纹理的状况,需在灰度共生矩阵的基础上再提取能综合表现灰度共生矩阵状况的纹理特征量,称为二次统计量。9.5 灰度共生矩阵法 一幅图像的灰度级数一般是256级,这样级数太多会导致计算灰度共生矩阵大,计算量大。为了解决这一问题,在求灰度共生矩阵之前,常压缩为16级。 在提取特征之前,需对灰度共生矩阵作正规化处

15、理。 纹纹 理理 分分 析析 第第 九九 章章遥感信息工程学院20典型的特征典型的特征: 9.5 灰度共生矩阵法1 1)角二阶矩)角二阶矩( (能量能量) ):是图像灰度分布均匀性的度量。由于是灰度共生矩阵元素值的平方和,也称为能量。2,ijdjipdE纹理粗时纹理粗时E E值大,纹理细时值大,纹理细时E E值小。值小。令 (i,j) = p(i,j)/ R R-正规化常数。当取d=1,=0时,每一行有2(Nx1)个水平相邻像素对,因此总共有2Ny(Nx1)水平相邻像素对,这时R=2Ny(Nx1)。同样当取d=1,=45时,共有2(Ny1)(Nx1)相邻像素对,R=2(Ny 1)(Nx 1)

16、。由对称性可知,当 =90和135时,其相邻像素对数是显然的。p 纹纹 理理 分分 析析 第第 九九 章章遥感信息工程学院212 2)惯性矩(对比度)惯性矩(对比度):):图像的对比度可以理解为图像的清晰度。在图像中,纹理的沟纹越深,则其对比度I越大,图像越清晰。jikdjipkdIijk,23 3)相关性:)相关性:用来衡量灰度共生矩阵的元素在行的方向或列的方向的相似程度。ijyyjixxijyjixyxijyxdjipjdjipidjipjdjipidjiijpdC,2222229.5 灰度共生矩阵法 纹纹 理理 分分 析析 第第 九九 章章遥感信息工程学院224 4)熵:)熵:是图像所具

17、有的信息量的度量。若图像没有任何纹理,则熵值几乎为零,若细纹理多,则熵值较大。,log,djipdjipdHii5 5)局部均匀性)局部均匀性(逆差矩):反映图像纹理的同质性,度量图像纹理局部变化的多少。其值大则说明图像纹理的不同区域间缺少变化,局部非常均匀。 ,11,2djipjidLij9.5 灰度共生矩阵法 纹纹 理理 分分 析析 第第 九九 章章遥感信息工程学院23 在纹理的句法结构分析中, 把纹理定义为结构基元按某种规则重复分布所构成的模式。为了分析纹理结构,首先要描述结构基元的分布规则, 一般可做如下两项工作: 从输入图像中提取结构基元并描述其特征; 描述结构基元的分布规则。具体做

18、法如下: 首先把一张纹理图片分成许多窗口,也就是形成子纹理。最小的小块就是最基本的子纹理,即基元。纹理基元可以是一个像素, 也可以是4个或9个灰度比较一致的像素集合。纹理的表达可以是多层次的,如图(a)所示,它可以从像素或小块纹理一层一层地向上拼合。当然,基元的排列可有不同规则,如图(b)所示,第一级纹理排列为ABA,第二级排列为BAB等,其中A、B代表基元或子纹理。这样就组成了一个多层的树状结构,可用树状文法产生一定的纹理并用句法加以描述。 9.6 纹理的句法结构分析法 纹纹 理理 分分 析析 第第 九九 章章遥感信息工程学院24 纹理的树状安排可有多种方法。 第一种方法如下图(c)所示,树根安排在中间,树枝向两边伸出,每个树枝有一定的长度。图: 纹理的树状描述及排列 ABABABABA纹理图像子图像基元第二级第一级0 0 1 0 00 0 1 0 01 1 1 1 10 0 1 0 00 0 1 0 0(a)(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论