Mw25微波资料学习教案_第1页
Mw25微波资料学习教案_第2页
Mw25微波资料学习教案_第3页
Mw25微波资料学习教案_第4页
Mw25微波资料学习教案_第5页
已阅读5页,还剩119页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、会计学1Mw25微波微波(wib)资料资料第一页,共124页。研究对象:研究对象: 横截面形状为矩形横截面形状为矩形( (圆形圆形) )的均匀的均匀无限长波导无限长波导(b do)(b do)中,电磁波的中,电磁波的传播问题。传播问题。S第1页/共123页第二页,共124页。麦克斯麦克斯韦韦方程方程波动方波动方程程波动方程波动方程在波导内在波导内的解的解讨论:电讨论:电磁波在波磁波在波导内的传导内的传播特性播特性波导内表面波导内表面的边界条件的边界条件纵向场纵向场法法研究研究(ynji)(ynji)方法方法 :第2页/共123页第三页,共124页。第3页/共123页第四页,共124页。问题问题

2、: 当频率升高时当频率升高时,辐射辐射(fsh)损耗损耗(平行双线平行双线)增加、介增加、介质损耗、内导体(趋肤效应)电阻损耗增加(同轴质损耗、内导体(趋肤效应)电阻损耗增加(同轴线)。线)。解决方法:解决方法: “去掉去掉”传输线传输线“芯线芯线”-波导波导定性分析:定性分析: 波导可看成,由许多并接在平行双线上的波导可看成,由许多并接在平行双线上的/4末端末端短路线形成。短路线形成。第4页/共123页第五页,共124页。类型:类型: (按截面形状)分:矩形、圆形(按截面形状)分:矩形、圆形规则波导规则波导: 截面均匀、填充介质均匀(截面均匀、填充介质均匀(、)不讨论)不讨论末端(即无限长)

3、的波导末端(即无限长)的波导; 波导内空间无自由电荷及传导电流波导内空间无自由电荷及传导电流(chun do din li),即,即(= 0,J = 0)无源。无源。第5页/共123页第六页,共124页。2.1.2电磁场的矢量电磁场的矢量(shling)波动方程波动方程1. Maxwell方程的一般形式方程的一般形式:DBtBEtDJH0EJHHBEEDrr00介 质 电 磁 特 性介 质 电 磁 特 性(txng)(txng)方程方程第6页/共123页第七页,共124页。2.正弦场正弦场Maxwell方程的复数方程的复数(fsh)形式:形式:jteetjtjzy,x,ERetEzy,x,ER

4、etz,y,x,E.E,H-E0,H,EJHjj第7页/共123页第八页,共124页。3.波动方程波动方程(运用矢量分析运用矢量分析(fnx)公式公式) 当讨论传播问题时当讨论传播问题时,考虑无源空间考虑无源空间,即即= 0、J = 0,则则 0E0HH-EEHjj2222222:0EEEH-EE-EEEkj令 0HH0EE2222kk波动方程波动方程第8页/共123页第九页,共124页。4.矢量波动方程化为标量方程矢量波动方程化为标量方程 例例:2.1.1写出直角坐标系中关于写出直角坐标系中关于(guny)电场的波电场的波动方程动方程 解:解: 0zy,x,zy,x,:,Hz,H,H,E,E

5、,E:zy,x,0HH0HH0HH:0EE0EE0EE0EEEEEEy,zx,Ey,zx,Ey,zx,Ezy,x,E22yxzyxz2z2y2y2x2x2z2z2y2y2x2x2z2z2y2y2x2x2zyx2222222kkkkkkkekekekeeezyxzyxzyx方程则表示用同理第9页/共123页第十页,共124页。2.1.3 均匀平面均匀平面(pngmin)波波1.均匀平面均匀平面(pngmin)波波: 等 相 位 面 与 等 振 幅 面 重 合 , 且 为 平 面等 相 位 面 与 等 振 幅 面 重 合 , 且 为 平 面(pngmin)的电磁波的电磁波. 例例:设传播方向为设传

6、播方向为Z方向方向,波阵面波阵面(等相位面等相位面)与与Z轴正交轴正交,波阵面内各点的场强值均相等波阵面内各点的场强值均相等. 第10页/共123页第十一页,共124页。2.平面波解平面波解: 由波动方程:由波动方程: 得,解:得,解: 复振幅矢量形式复振幅矢量形式: 复数复数(fsh)形式形式: 实数实数(瞬时瞬时)形式形式 : 0zEzE, 0, 02222222kdzdyx kzteekztjjkzcosEtz,EEz.tEEzE000第11页/共123页第十二页,共124页。3.均匀均匀(jnyn)平面波的传播特性:平面波的传播特性: (1).E和和H都垂直于传播方向都垂直于传播方向,

7、是是TEM波;波; (2).E和和H相互垂直相互垂直,EH沿波矢沿波矢k的方向的方向,它也它也是功率流矢量是功率流矢量(Pointing矢量矢量)的方向的方向; (3).时间上,时间上,E和和H同相,同相, 数值上,振幅比等于空间波阻抗数值上,振幅比等于空间波阻抗,即即 (4).波的传播速度是波的传播速度是 ./1/HE第12页/共123页第十三页,共124页。Fig2.1.32.1.4规则波导的边界条件规则波导的边界条件 规则波导的内表面可以看成是理想导体,而波导内通常是充满空气.因此,其内表面的边界条件,可看成是理想导体表面的边界条件:即sDn0Bn0EnJHns第13页/共123页第十四

8、页,共124页。xzya0be m第14页/共123页第十五页,共124页。 (波动方程边界条件)=定解问题(求波导(b do)中电磁场E、H,即求波导(b do)中电磁波的传播问题). 第15页/共123页第十六页,共124页。2.2矩形波导的一般分析矩形波导的一般分析 问题:问题: 研究高频电磁研究高频电磁(dinc)信号在矩形波信号在矩形波导内的传输特导内的传输特 性,即求矩形波导内的性,即求矩形波导内的E、H。条件:条件: 矩形波导内表面为理想导体,电磁矩形波导内表面为理想导体,电磁(dinc)波为正波为正 弦场,初始传播方向沿弦场,初始传播方向沿Z轴正向。轴正向。分析:分析: (方法

9、:解直角坐标系中的波动方程方法:解直角坐标系中的波动方程)第16页/共123页第十七页,共124页。波动方程边界条件横向场分量场的结构(TEmn,TMmn)传输特性:(三种波长,三种速度,单模传输条件)纵向场Ez,Hz的方程纵向场Ez,Hz的解讨论第17页/共123页第十八页,共124页。由波方程只考虑纵向场分量(fn ling) ,则由分离变量法:令 ,则 0HH0EE2222kk的方程,将之简记为ZZH,E)2 . 2 . 2(.02222222kzyx zZyYxXzy,x,22222222222222kzdZdZ1ydYdY1xdXdX10XYZkzdZdYZydYdXZxdXdYZ2

10、222z2y2x2z222y222x22kkkkk0ZkzdZd0YkydYd0XkxdXd第18页/共123页第十九页,共124页。 由初始条件:波沿Z轴正向(zhn xin)传播, 所以,kz2 0, 令 则由 222222222222222, 0:)()(,cccccyxzkkkjkkkkkkjk则如果0ZzkzdZd222 0zZzdzZd222)k()kk(ee) t , z (Z.ee) z (Z2c22c22)zt( jztjzjz第19页/共123页第二十页,共124页。 件确定为待定系数,由边界条的通解:受边界条件限制而得的解为波的传播方向,为驻波解,这是因为为行波解,的形式

11、不一样,这里与DC,B,A,ykDsinykCcosxkBsinxkAcoszy,x,HE yY,xXZ,yY,xXzZzZykDsinykcosyY xkBsinxkcosAxX yyxxzz,yyxxztjeC第20页/共123页第二十一页,共124页。 对对 值的讨论值的讨论(toln): 不同的 值,对应(duyng)波导的不同工作状态:第21页/共123页第二十二页,共124页。 2.2.2 矩形波导中的 TM(Transverse Magnetic) 波(横磁波) 条件: 1. 电场纵向(zn xin)分量 的解 : 条件:规则矩形波导,沿+Z方向传播 通解: 边界条件: 平行波导

12、内壁,则在其表面为零,即 0Hz0HzzEzE)k.(.j2c2)16. 2 . 2.(eyDsinkyCcoskxBsinkxAcosky,zx,EztjyyxxzzE)22. 2 . 2.(.)sin()sin(),(,.3 , 2 , 1,.,.0.3 , 2 , 1,.,.0.0., 0.0.:, 0)(00ztjzyxzzeybnxamEtzyxEEBDnbnkcmamkAEbyEax得令代入通解第22页/共123页第二十三页,共124页。(一(一 2. 矩形波导中,矩形波导中, 横向横向(hn xin)场与场与 的关系的关系zEzEzzyyxxzyxzyxaEaEaEjHHHzyx

13、aaaHjE.EjH)25. 2 . 2.(k.zEkjHyEkjHyEkjExEkjE222cz2cyz2cxz2cyz2cx第23页/共123页第二十四页,共124页。 3. TM 波的场表达式波的场表达式: 由(2.2.22)和(2.2.25)式,可得 3 , 2, 1,k0HsincosEkHcossinEkHsinsinEEcossinEkEsincosEkE222cz2cy2cxz2cy2cxnmbnameybnxamamjeybnxambnjeybnxameybnxambnjeybnxamamjztjztjztjztjztj式中第24页/共123页第二十五页,共124页。 结论:

14、 (1).取不同的m,n值,代表不同的TM波场结构模式。 (2).TMmn中: TEM(Transverse Magnetic )代表横磁波; m , n为模式指数。 2.2.3 矩形波导中的 TE(Transverse Electric ) 波(横电波) 条件: 边界条件: 分别(fnbi)垂直于波导的相应内壁, 则在其相应的表面为零,即0Hz)k.(.j2c2yxH,H)30.2.2(.0,0.0,.,0.0,.,0yHxHHbyHaxzzyx第25页/共123页第二十六页,共124页。 分析: 与 (2.2.2) 中,相同(xin tn)的推导方法,得 1. 磁场纵向分量 的解 : 2.

15、TE 波的场表达式: )31.2.2.(.eykcosxkcosHHztjyxzzH3,2, 1 ,0n3,2, 1 ,0mbnamk0EeybncosxamsinHamkjEeybnsinxamcosHbnkjEeykcosxkcosHHeybnsinxamcosHbnkjHeybncosxamsinHamkjH222czztj2cyztj2cxztjyxzztj2cyztj2cx式中第26页/共123页第二十七页,共124页。结论:结论: (1). 在矩形波导中,当在矩形波导中,当 可以沿可以沿Z轴传输轴传输(chun sh) (2). 对于不同的对于不同的 m , n 值,就有相应值,就

16、有相应的的22222,bnamkkcc波型的波mnTE.mnTE第27页/共123页第二十八页,共124页。 2.2.4 矩形波导的传输特性矩形波导的传输特性 1. 非均匀平面波特性非均匀平面波特性 沿 波导纵向传播( ),横截面(XY 平面)就是它的等相位面等相位面;然而,其振幅在横截面(XY 平面)上,按正弦或余弦规律变化,故称之为非均匀平面波。非均匀平面波。 波型指数波型指数 m : 表示沿宽边(X)分布的半驻波数(亦最大值个数); 波型指数波型指数 n: 表示沿窄边(Y)分布的半驻波数(亦最大值个数); mn.mnTMTE和)zt( jec第28页/共123页第二十九页,共124页。c

17、 2.截止波长截止波长 : 定义定义: 与波导临界状态相对应的波长. 即从传输状态到截止状态相对应的波长,称为截止波长 .cc.);(截止可以传输cc)35. 2 . 2(2:22bnamc表达式第29页/共123页第三十页,共124页。 推导:由矩形波导中,波动方程推导:由矩形波导中,波动方程(fngchng)(fngchng)的解,对应于波导临界状态有的解,对应于波导临界状态有 , .)1,.(2,2122;,0222222222是光速式中 cbnamfcbnamkfbnamkkccccccc第30页/共123页第三十一页,共124页。 部分波型的截止波长部分波型的截止波长: ,.112)

18、,(,2)(,)(,2)(221111012010baTMTEbTEaTEaTEcccc10TE第31页/共123页第三十二页,共124页。10TE 结论: (1).波导尺寸(a,b)一定时,不同的模式对应不同的截止 波长,其中 TE10 模的截止波长最长 (c(TE10)=2a) , 也称为波导的截止波长; 由于,只有2a 的电磁波才能(cinng)在波导中传输,故波导具有高通滤波特性。 (2).波导波型一定时,截止波长与波导尺寸有关. 尺寸 a,b越大,能在波导中传输的电磁波的频率也越低;但是,频率太低时,波导尺寸会过大. 因此,波导不用于米波波段。 第32页/共123页第三十三页,共12

19、4页。 (3).在边值问题中,将同一本征值(这里是kc,也就是c ) 对应不同的解的现象称为简并现象简并现象。 当m ,n 0 时,式(2.2.35)对TEmn,TMmn波都适用. 也就是说,对同一截止波长可以对应几种不同场型的波。 波型的简并现象波型的简并现象。 (4).单模传输条件: (a).当 a b,且 a 2b 时, a 2a (b).当 a b,且 a 2b 时, 2b 2a 称为TE10波的单模传输条件单模传输条件。 第33页/共123页第三十四页,共124页。单模工作区单模工作区单模工作区单模工作区2aa2b第34页/共123页第三十五页,共124页。 3. 波导波长波导波长g

20、 定义定义: (稳态下稳态下)同一时刻,波导中相位相差 2的两个等相位面之间的距离,称为波导波长。波导波长。 表达式表达式:2c1g第35页/共123页第三十六页,共124页。推导推导(tudo) : .,.1,2,2,2,2221的截止波长是对应模式是波导中的工作波长,nmkkjztztccgccgg第36页/共123页第三十七页,共124页。 4. 波的速度波的速度(sd) (1).相速相速p 定义定义:p为波型为波型TEmn,TMmn的等相位面沿的等相位面沿波导轴向传输的速度波导轴向传输的速度(sd) 。 表达式表达式: )39. 2 . 2.(.12cp第37页/共123页第三十八页,

21、共124页。.,)(;,.1100:22pgpccfffdtdzdtdzztdtdtztp显然播速度为电磁波在介质中的传式中求导对常数 推导推导(tudo): (tudo): 第38页/共123页第三十九页,共124页。 (2). 群速 定义: 指波导中,由许多频率组成的波群的包络行进的速度,或者(huzh)波包的速度。 (严格地讲,指包络波上某一恒定相位点前进的速度。) 即g21cddgg第39页/共123页第四十页,共124页。.)cos(2:.,).()(,);()()(:.),(:)(21)()(2)()(1,ztjmzjtjmzjtjmmeztAeeAeeAA合成波为即和位常数分别为

22、相应的相在色散介质中的行波和而角频率分别为两振幅均为条件推导能量的传播速度但由许多频率成分组成用来描述信号群速合成合成(hchng)波振幅受调制波振幅受调制-包络波包络波第40页/共123页第四十一页,共124页。第41页/共123页第四十二页,共124页。., 0,.)(:)(dddtdzdtzddttdztztgg常数为群速沿传播方向推进的速度常数点包络波上某一恒定相位定义_“电磁场与电磁波”p179第42页/共123页第四十三页,共124页。).(.111111111222,222222cddddddddfgpccggggg 推导推导(tudo): (tudo): (参看报:电磁场与电磁

23、波参看报:电磁场与电磁波p179)p179)第43页/共123页第四十四页,共124页。 色散色散: : 由于由于pp和和gg都与频率有关,使波包在传输过都与频率有关,使波包在传输过程中改变程中改变(gibin)(gibin)形状,也就是,使信号产生畸变,形状,也就是,使信号产生畸变,这种现象称为色散。这种现象称为色散。 相速相速 、群速与波长的关系:、群速与波长的关系:第44页/共123页第四十五页,共124页。 5. 波型阻抗 定义:波导中的波型阻抗,指的是波导中横向电场分量(fn ling)和横向磁场分量(fn ling)的比 。即)45. 2 . 2.(11k:)45. 2 . 2.(

24、111k:)43. 2 . 2(.2222bTMaTE.HEHEccccxyyxTMTE波对于波对于第45页/共123页第四十六页,共124页。;2:,1:,:.1:.2.2222bnamfVccg截止波长波导波长工作波长波导中的波长小结第46页/共123页第四十七页,共124页。.1:,1:,:. 222ccpgf群速相速波导中的光速波导中波的速度第47页/共123页第四十八页,共124页。第48页/共123页第四十九页,共124页。akHEEexaHHexaHkjHexaHkjETEnmcyzxztjzztjcxztjcy) 1 . 3 . 2.(.0.cos.sinsin, 0, 1),

25、33. 2 . 2(),32. 2 . 2()(0)(0)(010则令由式第49页/共123页第五十页,共124页。 1. 电场的结构电场的结构:)2 . 3 . 2(.sin,);,()(0ztjcyyyexaHkjEeEtzyxE图图 2.3.1 TE10波的电场分布波的电场分布abnamkc22第50页/共123页第五十一页,共124页。 表明表明(biomng):TE10 波的电场只有一个分量波的电场只有一个分量 Ey : .)(.).(/.:轴行波。沿轴无变化沿轴按正弦分布沿振幅大小横向场窄壁宽壁方向ZYXEy第51页/共123页第五十二页,共124页。图图2.3.1 TE10波的电

26、场波的电场(din chng)分布分布第52页/共123页第五十三页,共124页。 2. 磁场磁场(cchng)的结构:的结构: 所以,所以, .cos,sin,);,()(0)(0ztjzztjcxzzxxexaHHexaHkjHeHeHtzyxH第53页/共123页第五十四页,共124页。同相与轴行波。沿轴无变化沿轴按正弦分布沿振幅大小横向场窄壁宽壁方向yxEZYXH.)(.).(/.:表明:TE10 波的磁场(cchng)有二个分量Hx,Hz :第54页/共123页第五十五页,共124页。时间上正交与轴行波。沿轴无变化沿轴按余弦分布沿振幅大小纵向场窄壁宽壁方向yzzEHZYXH.)(.)

27、.(/.:第55页/共123页第五十六页,共124页。第56页/共123页第五十七页,共124页。图图2.3.3 TE10模的三维场结构模的三维场结构(jigu) 3. TE10 波的三维场结构(jigu):第57页/共123页第五十八页,共124页。TE10TE10场结构场结构(jigu) (jigu) 第58页/共123页第五十九页,共124页。;21)(:,2)(:,:21010aTEaTEfcgc波导波长截止波长工作波长波长第59页/共123页第六十页,共124页。.21120)(:;21)(:,21)(:,/103:2102102108aTEacTEacTEsmcgp波型阻抗群速相速

28、光速速度第60页/共123页第六十一页,共124页。 2.3.3 TE10波的管壁电流分布:波的管壁电流分布:)12. 3 . 2()()()11. 3 . 2()(:)(0)(00yztjzzxxxaxsyztjzzxxxxsseeHeHeHeJeeHeHeHeJHnJ窄壁依据在左侧壁上:在左侧壁上:在右侧壁上:在右侧壁上: 第61页/共123页第六十二页,共124页。)14. 3 . 2(.cossin)()()13. 3 . 2(:,cossin)(:)(0)(0)(0)(00 xztjzztjczzxxybysxztjzztjczzxxyyseexaHeexaHkjeHeHeJeexa

29、HeexaHkjeHeHeJ下宽壁上宽壁宽壁第62页/共123页第六十三页,共124页。 TE10波的管壁电流分布波的管壁电流分布HJS中间的源由场的变化中间的源由场的变化也即位移电流也即位移电流 给予连续。给予连续。tD第63页/共123页第六十四页,共124页。结论:结论:q电流的方向与磁力线垂直;电流的方向与磁力线垂直;q左右两侧壁的电流只有左右两侧壁的电流只有J Jy y大小相等,方向大小相等,方向相同;相同;q上下宽壁内的电流由上下宽壁内的电流由J Jz z和和J Jx x合成,在同一合成,在同一位置的上下宽壁内的管壁电流大小位置的上下宽壁内的管壁电流大小 相等,相等,方向相反。方向

30、相反。图示如下:图示如下:第64页/共123页第六十五页,共124页。图图2.3.5 TE10模管模管壁壁(un b)电流电流分布分布第65页/共123页第六十六页,共124页。第66页/共123页第六十七页,共124页。 在波导中凡是切断电流的都要引起辐射和损在波导中凡是切断电流的都要引起辐射和损耗,所以,波导与法兰的连接一定要密切配合耗,所以,波导与法兰的连接一定要密切配合。第67页/共123页第六十八页,共124页。计算功率时的面积元计算功率时的面积元xzy0abds2.3.4 TE10 波的传输波的传输(chun sh)功率和功率容量功率和功率容量第68页/共123页第六十九页,共12

31、4页。)18. 3 . 2.(2112044)sin(21)(21Re)(21Re21Re)(220200020*101010 aHkabHkabdxxaHkdyeedxdyHEedxdyeHeHeEedxdyHEdSTEPccTEbacTEzzxyzzzxxyyz第69页/共123页第七十页,共124页。 2. TE10 波的功率容量 定义:当波导中的最大电场等于其填充(tinchng)介质的击穿电场时,相应的传输功率称为波导的功率容量。即)20. 3 . 2(.21)(1204)(210210aTEEabTEPbrbr第70页/共123页第七十一页,共124页。 在实际工程中有个功率容量问

32、题(wnt),E0不能超过击穿场强Emax,所以 【讨论】(1)功率容量Pmax与波导面积ab成正比。所以,低频雷达功率容量大,此外,同样的情况波导比同轴线功率容量大。PPPEabarmaxmaxmax2248012第71页/共123页第七十二页,共124页。很明显,很明显,x x愈接近愈接近(jijn)1(jijn)1则功率容量则功率容量愈低,且愈低,且x0.5x0.5会出现其会出现其它模式。它模式。 (2)Pmax与 有关(yugun) 设 122axf xxc,( ) 1200.50.91.01f(x)x0509.c第72页/共123页第七十三页,共124页。图图2.3.6 TE10模的

33、模的Pb与与/c的关系的关系(gun x)9 . 05 . 0c第73页/共123页第七十四页,共124页。 它表明: (1).横向电场与横向磁场之间的数量关系; (2).它只与波导的宽边尺寸有关,而与窄边的尺寸无关(wgun)。因此,在研究不同窄边尺寸的波导的联结问题时,需要引入新的阻抗慨念。)10.3.2(21120)(210aHETExy第74页/共123页第七十五页,共124页。 2. 波导的等效(dn xio)特性阻抗: 如同讨论传输线问题一样,在讨论波导问题时(如连结、匹配等),我们也可以把波导中的问题转化为一个电路问题来讨论。“广义传输线理论”。这时,波导的等效(dn xio)阻

34、抗可以定义为: )21. 3 . 2(,2222eeeeeIPPVIVZ第75页/共123页第七十六页,共124页。)2()22. 3 . 2(.10002/TEakHabbHkdyEVcccaxbaye式中,Ve(等效电压(diny): 通常定义,波导截面中心从顶面到底面的电场的线积分.对于TE10波,即沿路径ABC时,A、C两点间的电压(diny).第76页/共123页第七十七页,共124页。)34. 3 . 2(.211204)18. 3 . 2( :)23. 3 . 2(.2sin202022000HaaabPHadxaxHkdxJIacaze传输功率 Ie(等效电流): 通常定义(d

35、ngy),波导顶面(一个宽壁)上总的纵向电流为波导的等效电流.第77页/共123页第七十八页,共124页。._120,.21)(:)(.)(82)(22)(2),21. 3 . 2()34. 3 . 2(),33. 3 . 2(),22. 3 . 2(10021010102210210波时的等效阻抗矩形波导传输定义得代入式将式TEaabTEabZTEabTEabIPTEabPVTEabIVZeeeeee第78页/共123页第七十九页,共124页。第79页/共123页第八十页,共124页。 2. TE01模模(m=0,n=1)第80页/共123页第八十一页,共124页。3. TE11模模(m=1

36、,n=1) 第81页/共123页第八十二页,共124页。 4. TM11 模模(m=1,n=1) 第82页/共123页第八十三页,共124页。高次模场结构的实际应用高次模场结构的实际应用(1).改变波导横截面的形状改变波导横截面的形状,而不改变波型而不改变波型. (Fig2.3.15不影响不影响TE10波波) 依据依据(yj):隔板平面隔板平面:波型电力线波型电力线(即即E) 波型磁力线波型磁力线(即即H) 传输波型仍满足边界条件传输波型仍满足边界条件.Fig2.3.15第83页/共123页第八十四页,共124页。(2).制作波型滤波器. (Fig2.3.15 消除(xioch)TE01) 依

37、据:隔板平面:需滤除波型的磁力线(即H) 需滤除波型的电力线(即E)Fig2.3.15第84页/共123页第八十五页,共124页。(3).制作波型转换器Fig2.3.16 条件(tiojin):如允许传输TE10和TE20,则如图2.3.16可将传输的TE10转换成TE20.Fig2.3.16第85页/共123页第八十六页,共124页。2.3.7 激励激励(jl)与耦合与耦合第86页/共123页第八十七页,共124页。Fig 2.4.12.4 圆形波导圆形波导(circular waveguide) 问题问题: 高频电磁波沿圆形波导轴向的传输特性高频电磁波沿圆形波导轴向的传输特性(txng)。

38、 分析:分析: 1.取如图取如图2.4.1所示圆柱坐标系所示圆柱坐标系; 2.方程方程:22222200kHkHEkE022TTEkE002222zzTTEkEEkE第87页/共123页第八十八页,共124页。2.4.1传输传输(chun sh)波型及场分量表达式波型及场分量表达式1. TM波波(Hz=0,Ez0)(0)(02)(0sincos)(cossin)(sincos)(ztjcmzztjcmcztjcmcemmkJEEemmkJEkmjEemmkJEkjE第88页/共123页第八十九页,共124页。.,0sincos)(cossin)(22)(0)(02akkHemmkJEkjHem

39、mkJEkjHmncczztjcmcztjcmc第89页/共123页第九十页,共124页。 2. TE波波(Ez =0, Hz0); 0sincos)(cossin)()(0)(02zztjcmcztjcmcEemmkJHkjEemmkJHkmjE第90页/共123页第九十一页,共124页。.,sincos)(cossin)(sincos)(22)(0)(02)(0akkemmkJHHemmkJHkmjHemmkJHkjHmnccztjcmzztjcmcztjcmc第91页/共123页第九十二页,共124页。 3.传输传输(chun sh)特性特性.1;1;2;:22222cgccccmncm

40、ncccckkkakTEakTMkf圆波导(b do)的主模是TE11,它的单模传输条件是: 2.61a3.41a第92页/共123页第九十三页,共124页。2.4.2圆形波导中的三个主要波型圆形波导中的三个主要波型 TEmn、TMmn中角标的含义:中角标的含义: “m”:沿圆周沿圆周(yunzhu)方向方向分布的整驻波分布的整驻波数数; “n”:沿半径沿半径r方向分布的最大值个数方向分布的最大值个数.1.TE11模:模:(m=1,n=1)场结构:场结构: 如图如图2.4.2,与矩形波导的与矩形波导的TE10模场结构相似模场结构相似.图图2.4.2 TE11模模场结构场结构(jigu)第93页

41、/共123页第九十四页,共124页。 00901800270 E E E Errrrmaxmax090180270 360oooooErrErRE00 maxE0RrJ 1m=1n=1第94页/共123页第九十五页,共124页。特点: (1).圆波导中的主模,c=3.41a,可单模传输; (2).具由极化(j hu)简并(即电场在横截面内,存在两相互垂直的分量). 应用: (1).波形转换元件-圆方波导; (2)特殊情况:传输圆极化(j hu)波,铁氧体环行器,极化(j hu)变换器.图图2.4.3 圆方圆方(yun fn)波导波导第95页/共123页第九十六页,共124页。 2.TM01模模

42、:(m=0,n=1)场结构场结构(jigu):如图:如图2.4.4, c=2.61a第96页/共123页第九十七页,共124页。 EHrJxxRrrRRr,( ).沿 方向有一最大值在有极大值118413832184118413832048E, Hr0r0.48RR Hz0r0.48Rm=0 圆对称在圆对称在 方向不变方向不变n=1第97页/共123页第九十八页,共124页。特点: (1).电场沿方向不变化,场分布具轴对称; (2).电场相对集中在中心线附近,磁场集中在波导壁附近; (3).磁场只有H分量(圆磁波),因而管壁电流只有Jz分量.应用: 用于天线(tinxin)的转动铰链(图2.4

43、.5).第98页/共123页第九十九页,共124页。图图2.4.5 转动转动(zhun dng)铰链铰链第99页/共123页第一百页,共124页。3. TE01模:模:(m=0,n=1) 场结构场结构(jigu):如图:如图2.4.6, c=1.64a图图2.4.6 TE01模的模的场结构场结构(jigu)第100页/共123页第一百零一页,共124页。TE01模的模的m和和nE , Hr0EHrJxxRrrRRr, ( ).max.沿 方向有一最大值在有0184124051841184124050765E , HrEz00rr0.765RRJ (x)0J (x)0Rm=0轴对称型轴对称型沿沿

44、 方向场分量不变方向场分量不变n=1第101页/共123页第一百零二页,共124页。特点:特点: (1).电磁场沿电磁场沿方向不变化方向不变化,具有轴对称性具有轴对称性; (2).电场只有电场只有E分量分量(圆电波圆电波),在中心与管壁附在中心与管壁附近为近为0. (3).在管壁附近只有在管壁附近只有Hz分量的磁场分量的磁场, 因而管壁因而管壁电流只有电流只有J分量分量.因此因此(ync)当传输功率时当传输功率时,随频随频率升高率升高,损耗减少损耗减少.应用应用: 高高Q圆柱谐振腔圆柱谐振腔; 毫米波远距离传输毫米波远距离传输.第102页/共123页第一百零三页,共124页。介质抽量波长计灵敏

45、测量波滤谐振腔频选 2.5微波谐振器(微波谐振器(P243:5.3重点重点(zhngdin))2.5.1谐振腔的一般概念谐振腔的一般概念第103页/共123页第一百零四页,共124页。第104页/共123页第一百零五页,共124页。谐振腔的定性分析谐振腔的定性分析(dngxngfnx):图图2.5.2.,;2100CLfLCf则当第105页/共123页第一百零六页,共124页。2.5.2谐振腔的基本参量谐振腔的基本参量2.5.3矩形谐振腔矩形谐振腔(rectangular waveguide cavity) 结构结构(jigu):坐标系如图坐标系如图2.5.4,是一矩形腔是一矩形腔体体,其尺寸

46、其尺寸 为为 ablXYZo图2.5.4,第106页/共123页第一百零七页,共124页。1.电磁场分布和振荡模式分析:(物理(wl)模型) 腔体中的振荡,可以看成是:波导中的电磁波在两个端面(z=0,z=l)来回反射,形成稳定驻波的结果.第107页/共123页第一百零八页,共124页。(1). TE模模(Ez=0,Hz0),.3 , 2 , 1,.;2 , 1 , 0,;,sincoscos2cossincos2coscossin20sincossin2sinsincos2:222002020202pnmlpbnamkezlpybnxamHjHezlpybnxamHlpankjHezlpyb

47、nxamHlpamkjHEezlpybnxamHamkEezlpybnxamHbnkETEctjztjcytjcxztjcytjcxmnp第108页/共123页第一百零九页,共124页。(2). TM模模(Hz =0, Ez0) ,.3 , 2 , 1 , 0,.;3 , 2 , 1,0cossincos2coscossin2cossinsin2sincossin2sinsincos2:222020200202pnmbnamkHezlpybnxamEamkjHezlpybnxamEbnkjHezlpybnxamEEezlpybnxamElpbnkEezlpybnxamElpamkETMcztj

48、cytjcxtjztjcytjcxmnp第109页/共123页第一百一十页,共124页。2222222:,2,12,2lpbnamTMTEbnampllpmnpmnpccgg2. 谐振波长谐振波长 由于模式指数由于模式指数p表示沿表示沿z轴分布的半驻波轴分布的半驻波(zh b)数数,因此因此, 第110页/共123页第一百一十一页,共124页。结论结论: (1). (或或f)一定时一定时,在同一腔体中在同一腔体中(即即a、b、l固定固定(gdng) 可以存在多个谐振模式可以存在多个谐振模式(不同的不同的m、n、p值值)-“多模性多模性”; (2). 在同一腔体中在同一腔体中,(即即a、b、l固

49、定固定(gdng)可以存在多个对应不同谐振模式可以存在多个对应不同谐振模式(不同不同的的m、n、p值值)的谐振波长的谐振波长(或或f)- “多谐性多谐性”; (3). 改变腔体尺寸改变腔体尺寸(即即a、b、l的值的值),可以改可以改变谐振波长变谐振波长(或或f)-“短路活塞调谐短路活塞调谐” (4). 在同一腔体中存在简并模在同一腔体中存在简并模.为减少简并为减少简并模的个数模的个数,应使应使a、b、l的值不成整数倍关系的值不成整数倍关系.第111页/共123页第一百一十二页,共124页。3.矩形腔中的主模-TE101模 在矩形腔中,当bal时, TE101模是主模,其谐振波长(bchng)最

50、长,场结构简单、稳定. (1). 谐振波长(bchng):221012)(laalTE (2).场表达式:(m=p=1,n=0)0sincos2cossin2sinsin2000yzxtjztjxtjyHEEezlxaHjHezlxaHlajHezlxaHaE第112页/共123页第一百一十三页,共124页。(3).场结构场结构: (图图2.5.5) 分布分布(fnb): 电场电场-中强外弱,管壁为零;中强外弱,管壁为零; 磁场磁场-中弱中弱(为零为零)外强,管壁最强外强,管壁最强. 时间上时间上,空间上空间上: 电场与磁场存在电场与磁场存在/2相位差相位差.图图2.5.5 TE101 模的场结构模的场结构(jigu)第1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论