版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二十二章 一元二次方程第1课时 一元二次方程(1) 教学案 主备:刘永红 审核:田福生 学习目标: 了解一元二次方程的概念;一般式ax2+bx+c=0(a0)及其派生的概念;应用一元二次方程概念解决一些简单题目 1通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义 2一元二次方程的一般形式及其有关概念 3解决一些概念性的题目 4通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情重难点关键 重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题 难点(关键):通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方
2、程的概念【预习内容】(阅读教材第1至2页内容,完成下面填空)问题1 要设计一座2m高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为多高?分析:设雕像下部高x m,则上部高_,得方程 _整理得 _ x问题2 如图,有一块长方形铁皮,长100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒。如果要制作的无盖方盒的底面积为3600c,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为x cm,则盒底的长为_,宽为_.得方程_整理得 _ 问题3 要组织一次排球邀请赛,参赛的每两个队
3、之间都要比赛一场。根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为_设应邀请x个队参赛,每个队要与其他_个队各赛1场,所以全部比赛共_场。列方程_化简整理得 _ 请口答下面问题: (1)方程中未知数的个数各是多少?_ (2)它们最高次数分别是几次?_方程的共同特点是: 这些方程的两边都是_,只含有_未知数(一元),并且未知数的最高次数是_(二次)的方程.1.一元二次方程:_.2. 一元二次方程的一般形式:_一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a0)这种形式叫做一元二次方程的一般形式其
4、中ax2是_,_是二次项系数;bx是_,_是一次项系数;_是常数项。(注意:二次项系数、一次项系数、常数项都要包含它前面的符号。二次项系数是一个重要条件,不能漏掉。)3. 例 将方程3x(x-1)=5(x+2) 化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项【课堂活动】活动1 预习反馈、概念明确活动2 概念应用 课堂训练例1:判断下列方程是否为一元二次方程:1.2. 将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、及常数项: 5x2-1=4x 4x2=81 4x(x+2)=25 (3x-2)(x+1)=8x-32. 根据下列问题,列出关于x的方程,并将其化
5、成一元二次方程的一般形式:4个完全相同的正方形的面积之和是25,求正方形的边长x; 一个长方形的长比宽多2,面积是100,求长方形的长x;把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x。活动3 归纳小结一元二次方程: 1. 概念 2.一般形式ax2+bx+c=0(a0)【课后提高】1px2-3x+p2-q=0是关于x的一元二次方程,则( ) ap=1 bp>0 cp0 dp为任意实数2当a_时,关于x的方程a(x2+x)=x2-(x+1)是一元二次方程.3若关于x的方程(m+3)+(m-5)x+5=0是一元二次方程,试求m的值,并计算这个方程的
6、各项系数之和4关于x的方程(m2-m)xm+1+3x=6可能是一元二次方程吗?为什么?第2课时 一元二次方程(2) 教学案 主备:刘永红 审核:田福生 学习目标:1 了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题x1.01.11.21.30.5-0.09-0.66-1.212提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根同时应用以上的几个知识点解决一些具体问题重点、难点重点:判定一个数是否是方程的根; 难点:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根【课
7、前预习】(阅读教材p3 , 完成课前预习)1:知识准备一元二次方程的一般形式:_2:探究问题: 一个面积为120m2的矩形苗圃,它的长比宽多2m,苗圃的长和宽各是多少?分析:设苗圃的宽为xm,则长为_m 根据题意,得_ 整理,得_1)下面哪些数是上述方程的根? 0,1,2,3,4, 5, 6, 7, 8, 9, 102)一元二次方程的解也叫做一元二次方程的_,即使一元二次方程等号左右两边相等的_的值。3)将x=-12代入上面的方程,x=-12是此方程的根吗?4)虽然上面的方程有两个根(_和_)但是苗圃的宽只有一个答案,即宽为_.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考
8、虑这些根是否确实是实际问题的解练习:1.你能想出下列方程的根吗? (1) x2 -36 = 0 (2) 4x2-9 = 0 2.下面哪些数是方程x2+x-12=0的根?-4, -3, -2, -1, 0, 1, 2, 3, 4。【课堂活动】活动1:预习反馈,明确概念活动2:典型例题,初步应用例1.下面哪些数是方程x2-x-6=0的根?-4, -3, -2, -1, 0, 1, 2, 3, 4。例2.你能用以前所学的知识求出下列方程的根吗?(1) (2) (3) 活动3:随堂训练1.写出下列方程的根:(1)9x2 = 1 (2)25x2-4 = 0 (3)4x2 = 22. 下列各未知数的值是方
9、程的解的是( )a.x=1 b.x=-1 c.x=2 d. x=-23.已知方程的一个根是1,则m的值是_4. 试写出方程x2-x=0的根,你能写出几个?活动4:归纳小结1.使一元二次方程成立的_的值,叫做一元二次方程的解,也叫做一元二次方程的_。2.由实际问题列出方程并得出解后,还要考虑这些解_【课后巩固】1.如果x2-81=0,那么x2-81=0的两个根分别是x1=_,x2=_2.一元二次方程的根是_;方程x(x-1)=2的两根为_3.写出一个以为根的一元二次方程,且使一元二次方程的二次项系数为1:_。4.已知方程5x2+mx-6=0的一个根是x=3,则m的值为_5. 若关于x的一元二次方
10、程的一个根是0,a的值是几?你能得出这个方程的其他根吗?6. 若,则_。已知m是方程的一个根,则代数式_。7. 如果x=1是方程ax2+bx+3=0的一个根,求(a-b)2+4ab的值8. 已知x=-1是方程ax2+bx+c=0的根(b0),则=( ) a1 b-1 c0 d29. 方程x(x-1)=2的两根为( )ax1=0,x2=1 bx1=0,x2=-1 cx1=1,x2=2 dx1=-1,x2=210.方程ax(x-b)+(b-x)=0的根是( )ax1=b,x2=a bx1=b,x2= cx1=a,x2= dx1=a2,x2=b211. 请用以前所学的知识求出下列方程的根。(x-2)
11、=1 9(x-2) 2=1 x2+2x+1=4 x2-6x+9=0拓广探索:1. 如果2是方程x2-c=0的一个根,那么常数c是几?你能得出这个方程的其他根吗?2. 如果关于x的一元二次方程ax2+bx+c=0(a0)中的二次项系数与常数项之和等于一次项系数,求证:-1必是该方程的一个根 第3课时 解一元二次方程 教学案 主备:刘永红 审核:田福生 学习目标:1、理解并掌握用直接开平方法、配方法、公式法、因式分解法解一元一次方程的方法2、选择合适的方法解一元二次方程重点、难点1、 重点:用直接开平方法、配方法、公式法、因式分解法解一元一次方程2、 难点:选择合适的方法解一元二次方程【课前预习】
12、一、梳理知识1、解一元二次方程的基本思路是:将二次方程化为一次方程,即降次2、一元二次方程主要有四种解法,它们的理论根据和适用范围如下表:方法名称理论根据适用方程的形式直接开平方法平方根的定义或配方法完全平方公式所有的一元二次方程公式法配方法所有的一元二次方程因式分解法两个因式的积等于0,那么这两个因式至少有一个等于0一边是0,另一边易于分解成两个一次因式的乘积的一元二次方程3、一般考虑选择方法的顺序是:直接开平方法、分解因式法、配方法或公式法二、用适当的方法解下列方程:1. 2. 3、x(x-2)+x-2=0 4. 5、5x2-2x- =x2-2x+ 6. 【课堂活动】活动1:预习反馈 活动
13、2:典型例题1用直接开方法解方程: 2用因式分解法解方程: 3用配方法解方程: 4用公式法解方程: 活动3:课堂小结解一元一次方程的方法: 【课后巩固】1用直接开方法解方程: 2用因式分解法解方程: 3用配方法解方程: 4用公式法解方程: 第4课时 配方法解一元二次方程 教学案 主备:刘永红 审核:田福生 教学目标1、理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题2、通过复习可直接化成x2=p(p0)或(mx+n)2=p(p0)的一元二次方程的解法,引入不能直接化成上面两种形式的解题步骤重点:讲清“直接降次有困难”,如x2+6x-16=0的一元二次方程的解题步骤难点:
14、不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧【课前预习】导学过程阅读教材第5页至第9页的内容,完成以下问题解下列方程 (1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9填空:(1)x2+6x+_=(x+_)2;(2)x2-x+_=(x-_)2(3)4x2+4x+_=(2x+_)2(4)x2-x+_=(x-_)2问题:要使一块长方形场地的长比宽多6cm,并且面积为16cm2,场地的长和宽应各是多少?思考?1、以上解法中,为什么在方程x2+6x=16两边加9?加其他数行吗? 2、什么叫配方法? 3、配方法的目的是什么? 4、配方法的关键是什么?
15、用配方法解下列关于x的方程(1)2x2-4x-8=0 (2)x2-4x+2=0 (3)x2-x-1=0 (4)2x2+2=5总结:用配方法解一元二次方程的步骤: 【课堂活动】活动1、预习反馈活动2、例习题分析例1用配方法解下列关于x的方程:(1)x2-8x+1=0 (2)2x2+1=3x (3)3x2-6x+4=0 练习:(1)x2+10x+9=0 (2)x2-x-=0 (3)3x2+6x-4=0 (4)4x2-6x-3=0 (5)x24x-9=2x-11 (6)x(x+4)=8x+12【课堂练习】:活动3、知识运用1. 填空:(1)x2+10x+_=(x+_)2;(2)x2-12x+_=(x
16、-_)2.(3)x2+5x+_=(x+_)2(4)x2-x+_=(x-_)2用配方法解下列关于x的方程(1) x2-36x+70=0 (2)x2+2x-35=0 (3)2x2-4x-1=0(4)x2-8x+7=0 (5)x2+4x+1=0 (6)x2+6x+5=0 (7)2x2+6x-2=0 (8)9y2-18y-4=0 (9)x2+3=2x归纳小结:用配方法解一元二次方程的步骤: 【课后巩固】 一、选择题 1将二次三项式x2-4x+1配方后得( ) a(x-2)2+3 b(x-2)2-3 c(x+2)2+3 d(x+2)2-3 2已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正
17、确的是( ) ax2-8x+(-4)2=31 bx2-8x+(-4)2=1 cx2+8x+42=1 dx2-4x+4=-11 3如果mx2+2(3-2m)x+3m-2=0(m0)的左边是一个关于x的完全平方式,则m等于( ) a1 b-1 c1或9 d-1或9 二、填空题1(1)x2-8x+_=(x-_)2;(2)9x2+12x+_=(3x+_)(3)x2+px+_=(x+_)2 2. 方程x2+4x-5=0的解是_三、计算:(1)x2+10x+16=0 (2)x2-x-=0 (3)3x2+6x-5=0 (4)4x2-x-9=0四、综合提高题1已知三角形两边长分别为2和4,第三边是方程x2-4
18、x+3=0的解,求这个三角形的周长 第5课时 用公式法解一元二次方程 教学案 主备:刘永红 审核:田福生 教学目标 1、理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程 2、复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a0) 的求根公式的推导公式,并应用公式法解一元二次方程重点:求根公式的推导和公式法的应用难点:一元二次方程求根公式法的推导【课前预习】导学过程阅读教材第34页至第37页的部分,完成以下问题1、用配方法解下列方程(1)6x2-7x+1=0 (2)4x2-3x=52总结用配方法解一元二次方程的步骤: 2、如果这个一元二次
19、方程是一般形式ax2+bx+c=0(a0),你能否用上面配方法的步骤求出它们的两根? 问题:已知ax2+bx+c=0(a0)试推导它的两个根x1= x2=分析:因为前面具体数字已做得很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去解:移项,得: ,二次项系数化为1,得 配方,得: 即 a0,4a2>0,式子b2-4ac的值有以下三种情况:(1) b2-4ac0,则0 直接开平方,得: 即x=x1= ,x2= (2) b2-4ac=0,则=0此时方程的根为 即一元二次程ax2+bx+c=0(a0)有两个 的实根。(3) b2-4ac0,则0,此时(x+)
20、2 0,而x取任何实数都不能使(x+)2 0,因此方程 实数根。由上可知,一元二次方程ax2+bx+c=0(a0)的根由方程的系数a、b、c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac0时,将a、b、c代入式子x=就得到方程的根,当b2-4ac0,方程没有实数根。(2)x=叫做一元二次方程ax2+bx+c=0(a0)的求根公式(3)利用求根公式解一元二次方程的方法叫公式法(4)由求根公式可知,一元二次方程最多有 实数根,也可能有 实根或者 实根。(5)一般地,式子b2-4ac叫做方程ax2+bx+c=0(a0)的根的判别式,通常用希腊字表示它
21、,即= b2-4ac 用公式法解下列方程 (1)2x2-4x-1=0 (2)5x+2=3x2 (3)(x-2)(3x-5)=0 (4)4x2-3x+1=0【课堂活动】例2、用公式法解下列方程(1)x2-4x-7=0 (2)2x2-x+1=0 (3)5x2-3x=x+1 (4)x2+17=8x练习:1、在什么情况下,一元二次方程ax2+bx+c=0(a0)有两个不相等的实数根?有两个相等的实数根? 2、写出一元二次方程ax2+bx+c=0(a0,b2-4ac0)的求根公式。 3、方程x2-4x+4=0的根的情况是( )a有两个不相等的实数根 b有两个相等的实数根 c有一个实数根 d没有实数根4、
22、用公式法解下列方程(1)2x2-4x-1=0 (2)5x+2=3x2 (3)(x-2)(3x-5)=0 (4)4x2-3x+1=0(5)x2+x-6=0 (6)x2-x-=0 (7)3x2-6x-2=0 (8)4x2-6=0 (9)x2+4x+8=4x+11 (10) x(2x-4)=5-8x 【课堂练习】:活动3、知识运用1、利用判别式判定下列方程的根的情况:(1)2x2-3x-=0 (2)16x2-24x+9=0 (3)x2-x+9=0 (4)3x2+10x=2x2+8x2、用公式法解下列方程(1)x2+x-12=0 (2)x2-x-=0 (3)x2+4x+8=2x+11 (4)x(x-4
23、)=2-8x 归纳小结本节课应掌握:(1)求根公式的概念及其推导过程; (2)公式法的概念;(3)应用公式法解一元二次方程; (4)初步了解一元二次方程根的情况第六课时 一元二次方程根与系数的关系 教学案 主备:刘永红 审核:田福生 学习目标:1理解并掌握根与系数关系:,;2会用根的判别式及根与系数关系解题.重点、难点重点:理解并掌握根的判别式及根与系数关系.难点:会用根的判别式及根与系数关系解题;【课前预习】阅读教材15页到16页的内容, 完成课前预习1、知识准备( 1 ) 一元二次方程的一般式: (2)一元二次方程的解法: (3)一元二次方程的求根公式: 2、探究1:完成下列表格方 程25
24、x2+3x-10=0-3问题:你发现什么规律?用语言叙述你发现的规律;x2+px+q=0的两根,用式子表示你发现的规律。 探究2:完成下列表格方 程2x2-3x-2=02-13x2-4x+1=01问题:上面发现的结论在这里成立吗?请完善规律;用语言叙述发现的规律; ax2+bx+c=0的两根,用式子表示你发现的规律。3、利用求根公式推到根与系数的关系(韦达定理)ax2+bx+c=0的两根= , = = =练习1:根据一元二次方程的根与系数的关系,求下列方程的两根和与两根积:(1) (2) (3)【课堂活动】活动1:预习反馈活动2:典型例题例1:不解方程,求下列方程的两根和与两根积:(1)x2-
25、6x-15=0 (2)3x2+7x-9=0 (3)5x-1=4x2例2:已知方程的一个根是 -3 ,求另一根及k的值。例3: 已知,是方程x2-3x-5=0的两根,不解方程,求下列代数式的值 例4:已知关于x的方程3x2-5x-2=0,且关于y的方程的两根是x方程的两根的平方,则关于y的方程是_活动3:随堂训练(1)x2-3x=15 (2)5x2-1=4x2+x (3)x2-3x+2=10 (4)4x2-144=0 (5)3x(x-1)=2(x-1) (6)(2x-1)2=(3-x)2活动4:课堂小结一元二次方程的根与系数的关系: 【课后巩固】一、填空1 若方程(a0)的两根为,则= ,= _
26、2 方程 则= ,= _3 若方程的一个根2,则它的另一个根为_ p=_ 4 已知方程的一个根1,则它的另一根是_ m= _ 5 若0和-3是方程的两根,则p+q= _ 6 在解方程x2+px+q=0时,甲同学看错了p,解得方程根为x=1与x=-3;乙同学看错了q,解得方程的根为x=4与x=-2,你认为方程中的p=,q=。 第七课时 实际问题与一元二次方程 教学案 主备:刘永红 审核:田福生 学习目标:1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型并能根据具体问题的实际意义,检验结果是否合理2.经历将实际问题抽象为代数问题的过程,探索问题中的数量关
27、系,并能运用一元二次方程对之进行描述。3.通过解决传播问题,学会将实际应用问题转化为数学问题,体验解决问题策略的多样性,发展实践应用意识4.通过用一元二次方程解决身边的问题,体会数学知识应用的价值,了解数学对促进社会进步和发展人类理性精神的作用重点、难点重点:列一元二次方程解有关传播问题、平均变化率问题的应用题难点:发现传播问题、平均变化率问题中的等量关系【课前预习】(阅读教材p19 21内容 , 完成课前预习)探 究:问题1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?分析:1、设每轮传染中平均一个人传染了x个人,那么患流感的这一个人在第一轮中传染了
28、_人,第一轮后共有_人患了流感;2、第二轮传染中,这些人中的每个人又传染了_人,第二轮后共有_人患了流感。则:列方程 ,解得 即平均一个人传染了 个人。再思考:如果按照这样的传染速度,三轮后有多少人患流感? 问题2:两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(精确到0.001)绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000元,乙种药品成本的年平均下降额为(6000-3000)÷2=120
29、0元,显然,乙种药品成本的年平均下降额较大相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这个问题分析:设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为 元,两年后甲种药品成本为 元 依题意,得 根据实际意义,甲种药品成本的年平均下降率约为 。设乙种药品成本的平均下降率为y则,列方程: 思考:经过计算,你能得出什么结论?成本下降额较大的药品,它的下降率一定也较大吗?应怎样全面地比较几个对象的变化状态?【课堂活动】例1:某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,
30、求每个支干长出多少小分支?例2:青山村种的水稻2001年平均每公顷产7200,2003年平均每公顷产8460,求水稻每公顷产量的年平均增长率.活动3:归纳小结1.列一元二次方程解应用题的一般步骤:(1)“设”,即设_,设未知数的方法有直接设和间接设未知数两种;(2)“列”,即根据题中_ 关系列方程;(3)“解”,即求出所列方程的_;(4)“检验”,即验证是否符合题意; (5)“答”,即回答题目中要解决的问题。第八课时 一元二次方程应用 教学案主备人:刘永红 审核:田福生课题:22.1一元二次方程二、探究观察这三个方程,有什么共同点?(组内交流)三、概括归纳1、什么叫一元二次方程?(课本p26页)2、一元二次方程一般形式二次项系数一次项系数常数项3、练习判断下列方程中,是一元二次
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 办公租借手机合同范例
- 承接加工手工合同范例
- 2024年客运车辆从业资格证模拟考试
- 外国文学作品导读章节学习指导
- 2024年临汾道路运输从业资格证b2
- 2024年浙江客运驾驶员从业资格证考试答案
- 2024年广州客运资格证考试多少道题及答案
- 实+用法律基础-形成性考核任务一-国开(ZJ)-参考资料
- 输气工试题3.判断题
- 公司申请书模板汇编8篇
- 麻醉科PDCA持续改进麻醉术后镇痛
- 齐鲁书社五年级传统文化教案第二单元中庸之道
- 新概念英语青少版-2B-unit-20课件(共31张)
- 消防安全教育培训记录
- 银行面试无领导小组讨论题目及答案
- 数学小报勾股定理
- 三年级海西家园第3课山水培育八大干
- 中建抗浮锚杆专项施工方案范例
- 【课件】信息系统的组成与功能 2023-2024学年人教中图版(2019)高中信息技术必修2
- 主播艺人入职面试信息登记表
- 灌注桩桩基工程桩头破除、缺陷修补、接桩施工方案
评论
0/150
提交评论