




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1.(12江西t16)已知数列的前项和,且的最大值为.(1)确定常数,求;(2)求数列的前项和.【测量目标】错位相减法求和.【难易程度】中等【试题解析】(1)当时,取最大值,即,故,从而,(步骤1)又,. (步骤2)(2),.(步骤3)2.(11四川t20) 设为非零实数,(1)写出并判断是否为等比数列.若是,给出证明;若不是,说明理由;(ii)设,求数列的前n项和【测量目标】等比数列的通项,错位相减法求和,根据数列的前n项求数列的通项公式.【难易程度】较难.【试题解析】(1)因为为常数,所以是以为首项,为公比的等比数列.(步骤1)(2)(1)(2)(步骤2)(2)(1)(步骤3)3.(10宁
2、夏t17)设数列满足,()求数列的通项公式;()令,求数列的前项和【测量目标】错位相减法求和.【难易程度】中等【试题解析】()由已知,当n1时, . (步骤1)而所以数列的通项公式为. (步骤2)()由知 (步骤3)从而 (步骤4)-得 .即.(步骤5)4.(10四川t21)已知数列an满足a10,a22,且对任意m、n都有a2m1a2n12amn12(mn)2()求a3,a5;()设bna2n1a2n1(n),证明:bn是等差数列;()设cn(an+1an)qn1(q0,n),求数列cn的前n项和sn.【测量目标】等差数列的性质,错位相减法求和,等差数列的通项.【难易程度】较难【试题解析】()由题意,令(步骤1)再令(步骤2) ()(步骤3) 所以,数列(步骤4) ()由()、()的解答可知则.即(步骤5)令由已知(令m=1)可得,(步骤6)那么,=于是,(步骤7)当q=1时,(步骤8)当时,.(步骤9)两边同乘q可得(步骤10)上述两式相减即得 =所以(步骤11)综上所述,(步骤12)5.(09全国i t20)在数列中, (i)设,求数列的通项公式; (ii)求数列的前项和.【测量目标】已知递推公式求通项,错位相减法求和.【难易程度】较难【试题解析】(i)由已知有, 即 ,从而 (步骤1)于是 =(步骤2)又 所以数列的通项公式: ()(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版电商企业信息安全保密及应急处理服务合同
- 二零二五年度办公楼租赁合同(含租赁合同争议解决)
- 2025版融资租赁保函担保合同规范范本
- 2025版水利工程水电设施建设与运营合同
- 二零二五年预制建筑用烧结砖及配件购销协议
- 二零二五年度大型活动临时设施包工包料合同
- 二零二五年度新型厂房场地租赁合同定制范本
- 二零二五年度高端装备采购及知识产权保护合同
- 二零二五年度新型建筑样本采购合同
- 2025版安防设备研发与市场推广合作协议
- 二手车辆买卖及后续维修服务协议
- 绿化技师考试试题及答案
- 数字普惠金融对城乡收入差距的影响机制与区域差异研究
- 云端漫步云端飞车创新创业项目商业计划书
- 2025年中国工程质量检测行业市场前景预测及投资价值评估分析报告
- GB/T 1633-2000热塑性塑料维卡软化温度(VST)的测定
- 手术讲解模板:肩关节全部置换术课件
- 反恐安全会议记录1
- 食堂伙食收据样稿
- DB4409∕T 06-2019 地理标志产品 化橘红
- 《悦纳自己》
评论
0/150
提交评论