![圆柱的侧面积表面积和体积答案_第1页](http://file2.renrendoc.com/fileroot_temp3/2021-10/29/f0afca78-687c-4853-aa67-33ea4fc076a2/f0afca78-687c-4853-aa67-33ea4fc076a21.gif)
![圆柱的侧面积表面积和体积答案_第2页](http://file2.renrendoc.com/fileroot_temp3/2021-10/29/f0afca78-687c-4853-aa67-33ea4fc076a2/f0afca78-687c-4853-aa67-33ea4fc076a22.gif)
![圆柱的侧面积表面积和体积答案_第3页](http://file2.renrendoc.com/fileroot_temp3/2021-10/29/f0afca78-687c-4853-aa67-33ea4fc076a2/f0afca78-687c-4853-aa67-33ea4fc076a23.gif)
![圆柱的侧面积表面积和体积答案_第4页](http://file2.renrendoc.com/fileroot_temp3/2021-10/29/f0afca78-687c-4853-aa67-33ea4fc076a2/f0afca78-687c-4853-aa67-33ea4fc076a24.gif)
![圆柱的侧面积表面积和体积答案_第5页](http://file2.renrendoc.com/fileroot_temp3/2021-10/29/f0afca78-687c-4853-aa67-33ea4fc076a2/f0afca78-687c-4853-aa67-33ea4fc076a25.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、k圆柱的侧面积、表面积和体积 答案典题探究例1一个圆柱和一个圆锥等底等高,圆锥体积是圆柱体积的,圆锥的体积与圆柱体积的比是1:3考点:圆柱的侧面积、表面积和体积;圆锥的体积 分析:(1)根据等底等高的圆柱的体积与圆锥的体积的关系即可得出答案;(2)根据等底等高的圆柱的体积是圆锥的体积的3倍,即可得出答案解答:解:(1)等底等高的圆锥的体积是圆柱的体积的,(2)因为等底等高的圆柱的体积是圆锥的体积的3倍,所以把圆锥的体积看作1份,那圆柱的体积是3份,即圆锥的体积与圆柱的体积的比是:1:3,故答案为:,1:3点评:此题主要考查了等底等高的圆柱的体积与圆锥的体积的关系例2一个圆柱的底面半径是5cm,
2、高是10cm,它的底面积是78.5cm2,侧面积是314cm2,体积是785cm3考点:圆柱的侧面积、表面积和体积 分析:圆柱的底面积=r2=3.14×52=78.5(平方厘米);侧面积=底面周长×高=ch;体积=sh,利用这三个公式即可求出解答:解:3.14×52,=78.5(平方厘米);2×3.14×5×10,=314(平方厘米);78.5×10,=785(立方厘米)故答案为:78.5;314;785点评:此题考查了学生对s底=r2、s侧=ch、v=sh三个公式的掌握情况,同时应注意面积与体积单位的不同 例3一个高10厘
3、米的圆柱体,如果把它的高截短3厘米,它的表面积减少94.2平方厘米这个圆柱体积是785立方厘米考点:圆柱的侧面积、表面积和体积 专题:压轴题分析:由题意知,截去的部分是一个高为3厘米的圆柱体,并且表面积减少了94.2平方厘米,其实减少的面积就是截去部分的侧面积,由此可求出圆柱体的底面周长,进一步可求出底面半径,再利用v=sh求出体积即可解答:解:94.2÷3=31.4(厘米);31.4÷3.14÷2=5(厘米);3.14×52×10,=3.14×250,=785(立方厘米);答:这个圆柱体积是785立方厘米故答案为:785点评:此题是
4、复杂的圆柱体积的计算,要明白:沿高截去一段后,表面积减少的部分就是截去部分的侧面积 例4一个圆柱体,底面半径是7厘米,表面积是1406.72平方厘米这个圆柱的高是多少?考点:圆柱的侧面积、表面积和体积 专题:压轴题分析:已知底面半径是7厘米,那么可以求得这个圆柱的底面积和底面周长;这里要求圆柱的高,根据已知条件,需要求得这个圆柱的侧面积,根据圆柱的表面积公式可得:侧面积=表面积2个底面积,再利用圆柱的侧面积公式即可求得这个圆柱的高解答:解:(1406.723.14×72×2)÷(2×3.14×7),=(1406.72307.72)÷4
5、3.96,=1099÷43.96,=25(厘米);答:这个圆柱的高是25厘米点评:此题考查了圆柱的表面积、侧面积、体积公式的综合应用,要求学生要熟练掌握公式的变形例5圆柱体积300立方厘米,侧面积100平方厘米,这个圆柱的表面积是多少平方厘米?考点:圆柱的侧面积、表面积和体积 专题:压轴题;立体图形的认识与计算分析:根据题意,要求圆柱体的表面积关键是求出底面半径,根据圆柱体的体积公式:v=r2h,侧面积公式:s=2rh,求出体积与侧面积的比值,进而求出底面半径,再根据圆柱体的表面积=侧面积+底面积×2,列式解答解答:解:圆柱的体积:圆柱的侧面积=r2h:2rh=,所以圆柱的
6、底面半径:r=(300÷100)×2=3×2=6(厘米),圆柱体的表面积:3.14×62×2+100,=3.14×36×2+100,=226.08+100,=326.08(平方厘米)答:这个圆柱体的表面积是326.08平方厘米点评:此题主要考查圆柱体的表面积的计算,关键是如何求出底面半径,可以根据圆柱的体积公式、侧面积公式,求出体积与侧面积的比值,进一步求底面半径演练方阵 a档(巩固专练)一选择题(共15小题)1(徐州模拟)一圆柱体的体积是141.3立方厘米底面周长是18.84厘米高是()厘米a7.5b5c15考点:圆柱的侧
7、面积、表面积和体积 专题:立体图形的认识与计算分析:圆柱的体积=底面积×高,已知一个圆柱的体积是141.3立方厘米,底面周长是18.84厘米,首先求出它的底面积,再用体积÷底面积=高;由此列式解答解答:解:底面半径是:18.84÷3.14÷2=6÷2=3(厘米);141.3÷(3.14×32)=141.3÷(3.14×9)=141.3÷28.26=5(厘米)答:高是5厘米故选:b点评:此题主要根据已知圆的周长求圆的面积的方法求出圆柱的底面积,再用体积÷底面积=高解决问题2(阳谷县)把一
8、个棱长为20厘米的正方体木块削成一个最大的圆柱体,这个圆柱体的体积是()立方厘米a8000b6280c1884考点:圆柱的侧面积、表面积和体积 专题:压轴题;立体图形的认识与计算分析:把一个棱长为20厘米的正方体木块削成一个最大的圆柱体,这个圆柱体的底面直径、高都等于正方体的棱长,根据圆柱的体积=底面积×高,把数据代入公式解答解答:解:3.14×(20÷2)2×20,=3.14×100×20,=6280(立方厘米);答:这个圆柱的体积是6280立方厘米故选:b点评:此题主要考查圆柱的体积公式的灵活运用,关键是明白:这个圆柱体的底面直径
9、、高都等于正方体的棱长3(锦屏县)一个圆柱体和一个圆锥体等底等高,圆柱体的体积是圆锥体的()ab3倍c考点:圆柱的侧面积、表面积和体积;圆锥的体积 专题:立体图形的认识与计算分析:一个圆柱体和一个圆锥体在“等底等高”的条件下,圆柱体的体积应是圆锥体的3倍解答:解:一个圆柱体和一个圆锥体等底等高,那么圆柱体的体积应是圆锥体的3倍;故选b点评:此题是考查圆柱、圆锥的关系,要注意圆柱和圆锥只有在等底等高的条件下体积才有3倍或 的关系4(广州)一个圆柱体和一个圆椎体的底面积和高相等,已知圆柱体的体积是7.8立方米,那么圆椎体的体积是()立方米a23.4b15.6c3.9d2.6考点:圆柱的侧面积、表面
10、积和体积;圆锥的体积 专题:立体图形的认识与计算分析:根据等底等高的圆锥和圆柱的体积之间的关系,如果圆锥和圆柱等底等高,那么圆锥的体积是圆柱体积的,由此解答解答:解:7.8×=2.6(立方米),答:圆椎体的体积是2.6立方米;故选:d点评:此题主要考查了圆锥和圆柱等底等高,圆锥的体积是圆柱体积的5(鞍山)把一根长2米的圆柱形木料截成3段小圆柱,3个小圆柱的表面积之和比原来增加了0.6平方米,原来这根木料的体积是()立方米a1.2b0.4c0.3d0.2512考点:圆柱的侧面积、表面积和体积 专题:压轴题;立体图形的认识与计算分析:根据圆柱的切割特点可知,切成3段后,表面积比原来增加了
11、4个圆柱的底面的面积,由此利用增加的表面积0.6平方米,除以4即可得出圆柱的一个底面的面积,再利用圆柱的体积公式即可求出这根木料的体积解答:解:0.6÷4×2=0.3(立方米),答:这根木料的体积是0.3立方米故选:c点评:抓住圆柱的切割特点和增加的表面积,先求出圆柱的底面积是解决此类问题的关键6(桃源县)圆锥的体积是6立方分米,与它等底等高圆柱的体积是()a3立方分米b2立方分米c18立方分米考点:圆柱的侧面积、表面积和体积;圆锥的体积 专题:压轴题;立体图形的认识与计算分析:根据等底等高的圆柱的体积是圆锥的体积的3倍,用6×3即可求出圆柱的体积解答:解:6
12、215;3=18(立方分米),答:圆柱的体积是18立方分米故选:c点评:此题主要考查了等底等高的圆柱的体积是圆锥的体积的3倍7(长寿区)一段重12千克的圆柱体钢柱,锻压成等底的圆锥,这个圆锥的高和圆柱的高相比()a圆锥的高是圆柱的3倍b相等c圆锥的高是圆柱的d圆锥的高是圆柱的考点:圆柱的侧面积、表面积和体积;圆锥的体积 专题:综合题分析:把圆柱体的钢柱锻压等底的圆锥,只是形状改变了,体积不变根据等底等高的圆锥的体积是圆柱体积的这个圆柱和圆锥等底等体积,那么圆锥的高就是圆柱高的3倍解答:解:根据等底等高的圆锥的体积是圆柱体积的如果圆锥和圆柱等底等体积,那么圆锥的高是圆柱高的3倍答:这个圆锥的高是
13、圆柱高的3倍故选:a点评:此题主要根据等底等高的圆锥的体积是圆柱体积的这一关系解决问题8(平坝县)等底等体积的圆柱和圆锥,如果圆锥的高是12厘米,那么圆柱的高是()厘米a12b4c36d14考点:圆柱的侧面积、表面积和体积;圆锥的体积 专题:立体图形的认识与计算分析:根据等底等高圆锥的体积是圆柱体积的,已知圆锥和圆柱等底等体积,圆锥的高是12厘米,那么圆柱的高是圆锥高的,由此解答解答:解:圆锥和圆柱等底等体积,圆锥的高是12厘米,那么圆柱的高是圆锥高的,即12×=4(厘米),答:圆柱的高是4厘米故选:b点评:此题解答关键是理解和掌握等底等高圆锥的体积是圆柱体积的,已知圆锥和圆柱等底等
14、体积,那么圆柱的高是圆锥高的,由此解决问题9(晴隆县)36个铁圆锥,可以熔铸成等底等高的圆柱体的个数是()a12个b8个c36个d72个考点:圆柱的侧面积、表面积和体积;圆锥的体积 分析:等底等高的圆柱的体积是圆锥体积的3倍,所以在36中有几个3就能铸造成几个等底等高的圆柱,求一个数里面有几个另一个数,用除法,直接列式即可解答解答:解:36÷3=12(个),故选:a点评:此题考查了等底等高的圆柱的体积是圆锥体积的3倍关系的灵活应用10(广汉市模拟)圆柱的体积不变,如果高扩大2倍,底面积应该()a扩大4倍b缩小4倍c扩大2倍d缩小2倍考点:圆柱的侧面积、表面积和体积 分析:圆柱的体积=
15、底面积×高,此题根据积不变的规律:一个因数扩大几倍,另一个因数同时缩小相同的倍数,积不变,即可解答解答:解:圆柱的体积=底面积×高,高扩大2倍,要使体积不变,根据积不变的规律可知:底面积要缩小2倍,故选:d点评:此题考查了积不变规律在圆柱的体积公式中的灵活应用11(江油市模拟)下面()杯中的饮料最多abc考点:圆柱的侧面积、表面积和体积 分析:本题是一道选择题,要比较体积的大小,可分别计算出结果再判断选哪一个答案;也可经过分析比较用排除法解答解答:解:用排除法分析解答:(1)要选最多的饮料,故答案d排除;(2)比较b、c的大小,因为高相等,那么底面直径大的体积就大,故bc;
16、(3)比较a、c的大小,因为底面直径相等,那么高大的体积就大,故ca;因为bc且ca,所以b最大;故选b点评:此类题目往往不用列式计算,灵活地运用排除法即可解答12(慈利县模拟)等体积的圆柱和圆锥,圆柱的底面半径是圆锥底面半径的,圆柱的高是圆锥高的()abc4倍d考点:圆柱的侧面积、表面积和体积;圆锥的体积 专题:立体图形的认识与计算分析:圆柱的体积=底面积×高,圆锥的体积=×底面积×高,设圆柱的底面半径为r,圆柱的高为h,圆锥的高为h,则圆锥的底面半径为2r,依据体积相等,即可得解解答:解:根据体积相等得: r2h=(2r)2h, h=h,答:圆柱的高是圆锥的高
17、的故选:d点评:此题主要考查圆柱和圆锥的体积的计算方法的灵活应用13(顺昌县)一个圆柱体杯中盛满15升水,把一个与它等底等高的铁圆锥倒放入水中,杯中还有()水a5升b7.5升c10升d9升考点:圆柱的侧面积、表面积和体积;圆锥的体积 分析:由条件“一个与它等底等高的铁圆锥”可知,圆锥的体积是圆柱体积的,也就是15升的;把铁圆锥倒放入水中后,铁圆锥会排出与它等体积的水,所以杯中剩下的水的体积就是圆柱体积的(1),也就是15升的(1),可用乘法列式求得解答:解:15×(1)=10(升);故选c点评:此题是考查圆柱、圆锥的关系,要注意圆柱和圆锥只有在等底等高的条件下才有3倍或的关系14(中
18、山市模拟)圆柱体和圆锥体底面周长比是2:3,体积比是8:5,圆锥与圆柱高的比是()a16:15b15:16c5:6d6:5考点:圆柱的侧面积、表面积和体积;圆锥的体积 分析:根据圆的周长公式知道底面周长的比就是半径的比,所以设圆柱的底面半径是2,则圆锥的底面半径是3,设圆柱的体积是8,则圆锥的体积是5;再根据圆柱的体积公式v=sh=r2h与圆锥的体积公式v=sh=r2h,得出圆柱的高与圆锥的高的关系,由此得出答案解答:解:底面周长的比就是半径的比,所以圆柱与圆锥的底面半径之比是2:3,设圆柱的底面半径是2,则圆锥的底面半径是3,设圆柱的体积是8,则圆锥的体积是5;所以圆柱的底面积是:×
19、;22=4;圆锥的底面积是:×32=9,所以圆柱与圆锥的高的比是:=6:5,故选:d点评:此题主要是根据圆柱的体积公式与圆锥的体积公式的推导出圆柱与圆锥的高的关系15(郯城县)等底等体积的圆柱和圆锥,圆锥高是9米,圆柱高是()a9米b18米c6米d3米考点:圆柱的侧面积、表面积和体积;圆锥的体积 分析:设圆柱和圆锥的体积为v;底面积为s,由此利用圆柱和圆锥的体积公式推理得出圆柱与圆锥的高的关系,由此即可解决问题解答:解:设圆柱和圆锥的体积为v;底面积为s,所以圆柱的高是:,圆锥的高是:,所以圆柱的高与圆锥的高的比是:=1:3,因为圆锥的高是9米,所以圆柱的高是:9÷3=3(
20、米);故选:d点评:根据圆柱与圆锥的体积公式得出体积相等、底面积相等的圆柱和圆锥的高的比是1:3是解决此类问题的关键二填空题(共13小题)16(玉环县)一个圆柱底面周长是12.56分米,高是6分米,它的底面积是12.56平方分米,表面积是100.48平方分米,体积是75.36立方分米如果把这个圆柱削成最大的圆锥,那圆锥体积是25.12立方分米考点:圆柱的侧面积、表面积和体积;圆锥的体积 分析:先根据圆柱的底面周长求出半径,然后根据圆面积计算公式求出面积圆柱的表面积=底面积的2倍+侧面积,侧面积=底面周长(12.56分米)×高(6分米)圆柱的体积=底面积(已求出)×高(6分米
21、)把圆柱削成最大的圆锥,则削成的圆锥和圆柱等底等高,所以圆锥的体积等于圆柱体积的(已求出)列式解答即可解答:解:底面积是:3.14×(12.56÷3.14÷2)×(12.56÷3.14÷2),=3.14×2×2,=12.56(平方分米);表面积是:12.56×2+12.56×6,=12.56×(2+6),=12.56×8,=100.48(平方分米);体积是:12.56×6=75.36(立方分米);圆锥的体积是:75.36×,=25.12(立方分米);故答案
22、为:12.56,100.48,75.36,25.12点评:解答此题的知识点是:已知圆周长求半径和面积;已知底面积、底面周长和高求侧面积、表面积和体积;圆柱和圆锥之间的关系17(北京)一个铁皮水桶,求做它用多少铁皮是求它的表面积,求它占空间的大小是求它的体积,求它可装多少升水是求它的容积考点:圆柱的侧面积、表面积和体积 专题:立体图形的认识与计算分析:根据圆柱的表面积、底面积、体积、容积的意义进行解答解答:解:做一个长方体的水桶需要多少铁皮是求水桶的表面积,水桶所占空间的大小是指水桶的体积,水桶能装多少水是指水桶的容积故答案为:表面积,体积,容积点评:此题考查了表面积、底面积、体积、容积四个概念
23、的区别与联系18(晴隆县)底面积和高分别相等的长方体、正方体、圆柱的体积一定相等(判断对错)考点:圆柱的侧面积、表面积和体积;长方体和正方体的体积 专题:立体图形的认识与计算分析:底面积和高分别相等的长方体、正方体、圆柱,它们的体积都是用底面积乘高得来,所以它们的体积也一定相等,原题说法是正确的解答:解:底面积和高分别相等的长方体、正方体、圆柱,由于它们的体积都是用底面积×高求得,所以它们的体积也是相等的;故答案为:点评:此题是考查体积的计算公式,求长方体、正方体、圆柱的体积都可用v=sh解答19(康县模拟)把一根5米的圆柱形钢锭截成两个小圆柱,表面积增加了25.12平方分米,这根钢
24、锭的体积是628立方分米考点:圆柱的侧面积、表面积和体积 分析:根据题意知道,25.12平方分米是圆柱的两个底面的面积,由此求出圆柱的底面积,进而根据圆柱的体积公式v=sh,即可求出这根钢锭的体积解答:解:5米=50分米,25.12÷2×50,=12.56×50,=628(立方分米),答:这根钢锭的体积是628立方分米;故答案为:628点评:解答此题的关键是,知道25.12平方分米是圆柱的两个底面的面积,再根据圆柱的体积公式解决问题20(临川区模拟)圆锥的体积与圆柱的体积比等于1:3×(判断对错)考点:圆柱的侧面积、表面积和体积;圆锥的体积 分析:圆锥的
25、体积等于与它等底等高的体积的,即等底等高的圆锥体的体积与圆柱体的体积的比等于1:3解答:解:圆锥的体积等于与它等底等高的圆柱体体积的,即等底等高的圆锥体的体积与圆柱体的体积的比等于1:3故答案为:×点评:此题主要考查的是圆锥的体积等于与它等底等高的体积的,考查此题的目的是强调“等底等高”的圆锥与圆柱之间的关系21(吴中区)有一个盖着瓶盖的瓶子里装着一些水(如图所示),请你根据图中标明的数据,计算瓶子的容积是60cm3考点:圆柱的侧面积、表面积和体积 专题:立体图形的认识与计算分析:因为两个瓶中的水是一样多的,所以空着的部分也是一样多的,用第一个瓶中的水+第二个瓶中的空余部分就是总的容
26、积根据圆柱的容积公式:v=sh,把数据代入公式解答即可解答:解:10×4+10×(75),=40+10×2,=40+20,=60(立方厘米);答:瓶子的容积是60立方厘米故答案为:60点评:此题解答关键是明确:两个瓶子中的水是一样多,所以直接利用圆柱的容积公式解答22(正宁县)圆锥的体积是圆柱体积的×(判断对错)考点:圆柱的侧面积、表面积和体积;圆锥的体积 专题:立体图形的认识与计算分析:因为圆柱和圆锥是在“等底等高”的条件下,圆锥的体积才是圆柱体积的,所以原题说法是错误的解答:解:圆锥的体积是与它等底等高的圆柱体积的,原题没有“等底等高”的条件是不成立
27、的;故答案为:×点评:此题是考查圆柱、圆锥的关系,要注意圆柱和圆锥在等底等高的条件下有3倍或的关系23(福田区模拟)一个圆柱底面半径是1厘米,高是2.5厘米,它的侧面积是15.7平方厘米考点:圆柱的侧面积、表面积和体积 专题:立体图形的认识与计算分析:圆柱的侧面积=底面周长×高=2rh,据此代入数据即可解答解答:解:3.14×1×2×2.5=15.7(平方厘米),答:这个圆柱的侧面积是15.7平方厘米故答案为:15.7点评:此题考查圆柱的侧面积公式的计算应用,熟记公式即可解答24(福田区模拟)一个圆柱和一个圆锥的底面积和高分别相等,圆锥的体积是
28、圆柱体积的,圆柱的体积是圆锥体积的3倍考点:圆柱的侧面积、表面积和体积;圆锥的体积 专题:立体图形的认识与计算分析:等底等的圆锥的体积是圆柱体积的,圆柱的体积是圆锥体积的3倍据此解答解答:解:等底等的圆锥的体积是圆柱体积的,圆柱的体积是圆锥体积的3倍故答案为:,3倍点评:此题考查的目的是掌握等底等高的圆锥和圆柱体积之间的关系25(福田区模拟)有一个圆柱体和一个圆锥体它们的底面半径相等,高也相等,圆柱的体积是6 立方分米,圆锥的体积是2立方分米正确考点:圆柱的侧面积、表面积和体积;圆锥的体积 分析:根据底面半径和高相等可知这个圆柱与圆锥是等底等高的,则圆柱的体积就是圆锥的体积的3倍,由此即可解答
29、问题解答:解:等底等高圆柱的体积就是圆锥的体积的3倍,6÷2=3,所以原题说法正确故答案为:正确点评:此题考查了等底等高的圆柱与圆锥的体积倍数关系的灵活应用,此题的关键是根据底面半径和高对应相等得出它们是等底等高的26(淮安)新亚商城春节期间,文具店实行“买一赠一”促销活动,实际是打五折出售;把一个圆柱体的侧面展开,得到一个长31.4厘米,宽10厘米的长方形,这个圆柱体的侧面积是314平方厘米,表面积是471平方厘米考点:圆柱的侧面积、表面积和体积 专题:立体图形的认识与计算分析:(1)买一赠一是指买2件商品,只需要付1件的钱数;设一件商品的单价是1,求出2件商品的总价,1件商品的总
30、价除以1件商品的总价,求出现价是原价的百分之几十,再根据打折的含义求解(2)根据圆柱体的侧面展开后,得到长方形的长是圆柱的底面周长,宽是圆柱的高,再依据圆柱的侧面积=底面周长×高,最后先求出圆柱底面的半径,再依据圆柱的表面积=侧面积+底面积×2解答即可解答:解:(1)1÷(1+1)=1÷2=50%答:打五折出售(2)侧面积:31.4×10=314(平方厘米)半径:31.4÷3.14÷2=5(厘米)表面积:314+3.14×52×2=314+157=471(平方厘米);答:这个圆柱体的侧面积是314平方厘米
31、,表面积是471平方厘米故答案为:五,314,471点评:本题主要考查打折的含义和圆柱的表面积,解答本题时,依据侧面积和表面积公式代入相应的数据即可解答,关键是理解长方形的长是圆柱的底面周长,宽是圆柱的高27(淮安)圆柱的侧面积加上两个底面的面积,就是圆柱的表面积考点:圆柱的侧面积、表面积和体积 专题:立体图形的认识与计算分析:根据圆柱体的表面积的意义和它特征,圆柱体的特征是:上下底面是完全相同的两个圆,侧面是一个曲面,侧面沿高展开是一个长方形,它的侧面积加上两个底面积就是它的表面积由此解答解答:解:根据圆柱体的表面积的意义和它的特征,圆柱的侧面积加上两个底面积就是它的表面积故答案为:侧,两个
32、底面点评:此题主要考查圆柱体的表面积的意义和它的特征28(田林县模拟)把一个体积是9.42立方分米的圆柱体削成一个最大的圆锥体,削去的体积是6.28立方分米(判断对错)考点:圆柱的侧面积、表面积和体积;圆锥的体积 专题:立体图形的认识与计算分析:把一个圆柱体削成一个最大的圆锥体,说明圆柱与圆锥等底等高,那么圆锥的体积就是圆柱体积的,求得圆锥体积,就可以求出削去的体积解答:解:9.429.42×=9.423.14=6.28(立方分米);答:要削去6.28立方分米故答案为:点评:此题主要考查等底等高的圆柱与圆锥的关系:圆锥的体积等于与它等底等高圆柱体积的b档(提升精练)一选择题(共15小
33、题)1(通川区模拟)把一个圆柱的底面平均分成若干个扇形,然后切开拼成一个近似的长方体,表面积比原来增加了100cm2,已知圆柱的高是10cm,圆柱的侧面积是()cm2a314b628c785d1000考点:圆柱的侧面积、表面积和体积 分析:根据题意可知:把一个圆柱体的底面平均分成若干个扇形,然后切开拼成一个近似的长方体,表面积比原来增加了100cm2,表面积比原来增加了两个长方形的面积这个长方形长是圆柱的高,宽是圆的底面半径因此,圆柱的底面半径是100÷2÷10=5厘米,圆柱体的侧面积=底面周长×高;由此列式解答解答:解:圆柱的底面半径是:100÷2
34、247;10,=50÷10,=5(厘米);圆柱的侧面积是:2×3.14×5×10,=31.4×10,=314(平方厘米);答:圆柱的侧面积是314平方厘米故选:a点评:此题主要考查圆柱的侧面积的计算,解答关键是理解把圆柱切拼成近似长方体,表面积比原来增加了两个长方形的面积每个长方形的长等于圆柱的高,宽等于底面半径;再根据侧面积公式解答即可2(温江区模拟)一个底面直径是4厘米的圆柱,侧面展开是一个正方形,则这个圆柱的体积是()立方厘米a4b42c16d162考点:圆柱的侧面积、表面积和体积 专题:立体图形的认识与计算分析:根据圆柱的侧面展开图特征
35、可知,这个正方形的边长等于圆柱的底面周长和高,由此根据圆柱的体积公式即可解答问题解答:解:底面半径是:4÷2=2(厘米)圆柱的底面积:×22=4(平方厘米);圆柱的高(即圆柱的底面周长):×2×2=4(厘米);圆柱的体积:4×4=162(立方厘米)答:这个圆柱的体积是162立方厘米故选:d点评:解答此题的关键是根据侧面展开图是一个正方形,明确圆柱的高与底面周长相等3(延边州)计算一个圆柱形无盖水桶要用多少铁皮,应该是求()a侧面积b侧面积十1个底面积c侧面积十2个底面积d体积考点:圆柱的侧面积、表面积和体积 专题:立体图形的认识与计算分析:根据
36、圆柱的特征,圆柱的上、下底面是完全相同的两个圆,侧面是一个曲面,侧面展开是一个长方形,这个长方形的长等于圆柱的底面周长,宽等于圆柱的高根据题意可知,因为铁皮水桶无盖,因此计算做一个无盖的圆柱形铁皮水桶需要多少铁皮,其实就是计算水桶的侧面积和一个底面积的和解答:解:因为铁皮水桶无盖,因此计算做一个无盖的圆柱形铁皮水桶需要多少铁皮,其实就是计算水桶的侧面积和一个底面积的和故选:b点评:此题主要考查圆柱的特征,明确水桶无盖4(高台县)一个圆柱体,如果它的底面积扩大2倍,高不变,体积扩大()倍a2b5c6考点:圆柱的侧面积、表面积和体积 专题:平面图形的认识与计算分析:圆柱的体积=底面积×高
37、,则它的底面积扩大2倍,在高不变的情况下,体积就扩大2倍,据此即可解答解答:解:因为圆柱的体积=底面积×高,所以高一定时,底面积扩大2倍,则圆柱的体积就扩大2倍故选:a点评:此题的考查圆柱的体积公式的灵活应用5(华亭县模拟)把一个圆柱形的钢材削成一个最大的圆锥,圆锥体积是削去部分体积的()abcd2倍考点:圆柱的侧面积、表面积和体积;圆锥的体积 分析:由题意知,削成的最大圆锥体与圆柱是等底等高的,所以圆锥的体积应是圆柱体积的;也就是说,把圆柱的体积看作单位“1”,是3份,圆锥体积是1份,削去部分的体积就是2份;要求最后的问题,可直接列式解答解答:解:1÷(31)=;故选c点
38、评:此题是考查圆柱、圆锥的关系,要注意圆柱和圆锥在等底等高的条件下体积有3倍或的关系6(张掖)等底等高的圆柱体和圆锥体,圆锥体体积是圆柱体体积的()abc3倍考点:圆柱的侧面积、表面积和体积;圆锥的体积 专题:立体图形的认识与计算分析:因为圆柱的体积=底面积×高,圆锥的体积=×底面积×高,所以等底等高的圆锥的体积等于圆柱的体积的,据此即可选择解答:解:因为圆柱的体积=底面积×高,圆锥的体积=×底面积×高,所以等底等高的圆锥的体积等于圆柱的体积的故选:b点评:此题考查了等底等高的圆柱与圆锥的体积的倍数关系7(邹平县)做一个铁皮烟囱需要多
39、少铁皮,就是求烟囱的()a表面积b体积c侧面积考点:圆柱的侧面积、表面积和体积 分析:根据圆柱体的侧面积的定义知道,圆柱侧面积是指将一个圆柱体沿高展开后得到的长方形的面积,做一个铁皮烟囱实际就是做一个没有上、下底面的圆柱体,要求铁皮的多少就是求烟囱的侧面积,解答:解:因为,烟囱是通风的,是没有上下两个底的,所以,做一个铁皮烟囱需要多少铁皮,就是求烟囱的侧面积,故选:c点评:此题主要考查了圆柱体的侧面积的意义,及在生活中的实际应用8(蓝田县模拟)一个圆柱体积比一个与它等底等高的圆锥体的体积大()ab1c2倍d3倍考点:圆柱的侧面积、表面积和体积;圆锥的体积 分析:因为圆柱的体积等于和它等底等高的
40、圆锥体体积的3倍,所以一个圆柱体积比一个与它等底等高的圆锥体的体积大31=2倍解答:解:因为等底等高的圆锥、圆柱的体积之间的关系是:v圆锥=v圆柱,所以v圆柱=3v圆锥;因此圆柱体积比等底等高的圆锥体的体积大:31=2倍;故选:c点评:解决此题主要运用了等底等高的圆锥、圆柱的体积之间的关系:v圆锥=v圆柱9(广州模拟)一个圆柱底面直径是0.5米,高1.8米,求它的侧面积为()平方米a9b2.83c约为2.83考点:圆柱的侧面积、表面积和体积 分析:要求圆柱的侧面积,根据“圆柱的侧面积=底面周长×高”,代入数字,进行解答,即可解决问题解答:解:3.14×0.5×1.
41、8,=1.57×1.8,=2.826,2.83(平方米);故选:c点评:此类题解答有现成的计算公式,代入数字算出即可10(尚义县)两个圆柱的高相等,底面直径的比是3:2,则体积比为()a3:2b27:8c9:4考点:圆柱的侧面积、表面积和体积;比的意义 专题:立体图形的认识与计算分析:底面直径的比是3:2,则它们的半径比也是3:2,设大小圆柱的高为h,小圆柱的底面半径2r,则大圆柱的底面半径为3r,分别代入圆柱的体积公式,即可表示出二者的体积,再用大圆柱体积比小圆柱体积即可得解解答:解:设大小圆柱的高为h,小圆柱的底面半径为2r,则大圆柱的底面半径为3r,所以圆柱的体积之比是:(3r
42、)2h:(2r)2h=9r2h:4r2h,=9:4答:体积比为9:4故选:c点评:解答此题的关键是:设出大小圆柱的底面半径和高,分别表示出二者的体积11(金凤区模拟)一个圆锥形容器的高是6厘米,里面装满了水,把水倒入与它等底的圆柱形容器中,水面高()厘米a2b6c8d9考点:圆柱的侧面积、表面积和体积;圆锥的体积 专题:立体图形的认识与计算分析:倒入前后水的体积相同,底面积相等,由此设两个容器的底面积相等是s,倒入圆柱容器时水的高度是h,根据体积相等可得:sh=s×6,利用等式的性质两边同时除以s即可解答问题解答:解:设两个容器的底面积相等是s,倒入圆柱容器时水的高度是h,根据体积相
43、等可得:sh=s×6,两边同时除以s可得:h=2答:水面高2厘米故选:a点评:此题考查了圆柱与圆锥的体积公式和等式的性质的灵活应用,关键要抓住前后水的体积不变,底面积相等,形状不同(圆柱与圆锥)12(江油市模拟)下面容器中(材料厚度相同),()的容积大abc考点:圆柱的侧面积、表面积和体积;圆锥的体积 专题:立体图形的认识与计算分析:根据圆柱与圆锥的容积的计算公式,分别计算出三个选项中的容器的容积,再比较即可解答解答:解:a、r2×2h=2r2h;b、(2r)2h=4r2h;c、(3r)2h×=3r2h;所以容积最大的是b故选:b点评:此题主要考查圆柱与圆锥的容积
44、的计算方法,熟记公式即可解答13(温江区模拟)把一个棱长是2分米的正方体木块削成一个最大的圆柱体,圆柱体的表面积是()平方分米a12.56b6.28c18.84d25.12考点:圆柱的侧面积、表面积和体积 专题:立体图形的认识与计算分析:正方体内最大的圆柱的底面直径和高都等于这个正方体的棱长,利用圆柱的表面积公式即可解答解答:解:3.14×(2÷2)2×2+3.14×2×2=6.28+12.56=18.84(平方分米)答:这个圆柱体的表面积是18.84平方分米故选:c点评:抓住正方体内最大的圆柱的底面直径和高等于正方体的棱长即可解决此类问题14
45、(临川区模拟)把一个高6分米的圆柱切成两个小圆柱,表面积增加31.4平方厘米,这个圆柱的体积是()立方厘米a94.2b942c188.4考点:圆柱的侧面积、表面积和体积 专题:立体图形的认识与计算分析:根据题意知道,31.4平方厘米是圆柱的两个底面的面积,由此求出圆柱的底面积,进而根据圆柱的体积公式v=sh,即可求出这个圆柱的体积解答:解:31.4÷2×6=15.7×6=94.2(立方厘米)答:这个圆柱的体积是94.2立方厘米故选:a点评:解答此题的关键是,明确31.4平方厘米是圆柱的两个底面的面积,再根据圆柱的体积公式解决问题15(蓝田县模拟)把一段圆钢切削成一
46、个最大的圆锥体,切削掉的部分部分重4千克,这段圆钢重()千克a24b6c12d8考点:圆柱的侧面积、表面积和体积;圆锥的体积 分析:圆柱削成最大的圆锥和原来的圆柱是等底等高,根据圆柱和圆锥的体积公式可得:圆锥的体积是原来圆柱的,那么削掉部分的体积就是圆柱的,由此即可解决问题解答:解:等底等高的圆锥的体积=圆柱体积的所以削掉部分的体积是原来圆柱的,那么削掉部分的质量是圆柱质量的,所以这个圆钢的质量为:4=6(千克);故选:b点评:抓住题干得出削成的圆锥和圆柱等底等高,是解决本题的关键,然后利用钢材不变,体积与质量成正比的关系得出削掉部分的质量占总重量的几分之几,即可解决问题二填空题(共13小题)
47、16(开县)一个圆锥与一个圆柱的底面积相等,已知圆锥与圆柱的体积比是1:6,圆锥的高是4.8厘米,则圆柱的高是9.6厘米考点:圆柱的侧面积、表面积和体积;圆锥的体积 分析:设圆柱的高为h,底面积为s,利用圆柱的体积=sh,圆锥的体积=sh,再据“圆锥与圆柱的体积比是1:6”即可求出圆柱的高解答:解:设圆柱的高为h,底面积为s,则sh=s×4.8,h=×4.8,h=1.6, h=9.6;故答案为:9.6点评:此题主要考查圆柱和圆锥的体积的计算方法的灵活应用17(高台县模拟)把一个圆柱体的侧面展开,得到一个长31.4厘米,宽10厘米的长方形,这个圆柱体的侧面积是314平方厘米,
48、表面积是471平方厘米,体积是785平方厘米考点:圆柱的侧面积、表面积和体积;圆柱的展开图 专题:立体图形的认识与计算分析:把一个圆柱体的侧面展开,得到一个长31.4厘米,宽10厘米的长方形,长方形的长就是底面圆的周长,宽就是圆柱体的高,(1)依据圆柱体侧面积=侧面展开后得到长方形面积,以及长方形面积=长×宽即可求出圆柱体的侧面积,(2)先根据半径=底面周长÷÷2,求出底面半径,进而依据底面积=r2,求出底面积,再根据表面积=底面积×2+侧面积即可解答,(3)依据体积=底面积×高即可解答解答:解:(1)31.4×10=314(平方厘米
49、),答:这个圆柱体的侧面积是314平方厘米;(2)31.4÷3.14÷2,=10÷2,=5(厘米),3.14×52×2+314,=78.5×2+314,=157+314,=471(平方厘米),答:圆柱体的表面积是471平方厘米;(3)3.14×52×10,=78.5×10,=785(立方厘米),答:圆柱体的体积是785立方厘米故答案为:314,471,785点评:本题主要考查学生对于圆柱体的侧面积,表面积,体积的计算方法的掌握情况,关键是明确侧面展开后得到的长方形,长方形的长就是底面圆的周长,宽就是圆柱体
50、的高18(陕西)圆柱的底面半径扩大到原来的2倍,高不变它的体积就扩大到原来的4倍(判断对错)考点:圆柱的侧面积、表面积和体积 专题:立体图形的认识与计算分析:圆柱的底面半径扩大2倍,则它的底面积就扩大4倍,在高不变的情况下,体积就扩大4倍,据此判断即可解答:解:因为v=r2h;当r扩大2倍时,v=(r×2)2h=r2h×4所以体积就扩大4倍;故答案为:点评:掌握圆柱的体积公式是解题的关键19(菏泽模拟)圆柱的底面半径扩大2倍,高缩小2倍,它的体积不变错误(判断对错)考点:圆柱的侧面积、表面积和体积 分析:根据圆柱的体积公式,圆柱的体积等于底面积乘高,底面半径的变化会引起底面
51、积的变化,底面积与高的变化会引起体积的变化,根据其变化规律推出判断即可解答:解:圆柱的体积等于底面积以高,圆柱的底面半径扩大2倍,它的底面积则扩大2的平方倍,也就是4倍,即使高缩小2倍,它的面积仍然扩大了2倍,所以说它的体积不变的说法错误故答案为:错误点评:此题考查圆柱的体积,根据圆柱的体积公式以及相关部分的计算公式进行推算20(宿城区模拟)一个圆柱的底面周长是6.28厘米,高5厘米,它的侧面积是31.4平方厘米,表面积是37.68平方厘米,体积是15.7立方厘米考点:圆柱的侧面积、表面积和体积 专题:立体图形的认识与计算分析:此题根据圆柱的底面半径=底面周长÷3.14÷2
52、,圆柱的侧面积=底面周长×高,表面积=侧面积+2个底面积,体积=底面积×高,代入公式计算即可解答:解:侧面积是:6.28×5=31.4(平方厘米),底面半径是:6.28÷3.14÷2=1(厘米),表面积是:3.14×12×2+31.4,=6.28+31.4,=37.68(平方厘米),体积是:3.14×12×5=15.7(立方厘米),答:侧面积是31.4平方厘米,表面积是37.68平方厘米,体积是15.7立方厘米故答案为:31.4平方厘米;37.68平方厘米;15.7立方厘米点评:此题主要考查圆柱的侧面积、表面积、体积公式及其计算,熟记公式即可解答21(蓝田县模拟)一个圆柱底面周长是6.28分米,高是1.5分米,它的表面积是15.7平方分米,体积是4.71立方分米考点:圆柱的侧面积、表面积和体积 专题:立体图形的认识与计算分析:此题先利用底面周长求出这个圆柱的底面半径,先求出侧面积,再利用圆柱的表面积和体积公式进行解答解答:解:底面半径:6.28
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年企业机器质押借款合同
- 2025年劳动解除合同标准条款
- 2025年抗疟药项目申请报告模范
- 2025年货车租赁与运输服务合同样本
- 2025年国际货物买卖合同与惯例
- 2025年专业清洁人员派遣协议
- 2025年二手车购买合同范本
- 2025年三板市场股权买卖协议
- 2025年伙伴开设教育机构合作协议书模板
- 2025年继电器研发策划技术协议书范本
- 河南2025年河南职业技术学院招聘30人笔试历年参考题库附带答案详解
- 2024统编版新教材道德与法治七年级全册内容解读课件(深度)
- 成人氧气吸入疗法-中华护理学会团体标准
- 西师版二年级数学下册全册课件【完整版】
- 五年级下册数学课件 第10课时 练习课 苏教版(共11张PPT)
- 电梯口包边施工方案正式
- 三年级道德与法治下册我是独特的
- 青年卒中 幻灯
- 典型倒闸操作票
- 第七章 化学物质与酶的相互作用
- 机械毕业设计论文钢筋自动折弯机的结构设计全套图纸
评论
0/150
提交评论