比例法解行程题_第1页
比例法解行程题_第2页
比例法解行程题_第3页
比例法解行程题_第4页
比例法解行程题_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、-作者xxxx-日期xxxx比例法解行程题【精品文档】比例法【例 1】 (第8届迎春杯决赛试题)小明和小刚进行200米短跑比赛(假定二人的速度均保持不变)。当小刚跑了180米时,小明距离终点还有50米,那么,当小刚到达终点时,小明距离终点还有多少米? 【解】当小刚跑了180米时,小明跑了200-50=150米,二人的路程之比为180:150=6:5,小刚到达终点时,由于速度不变,二人的路程比依然为6:5。若设小刚路程200米为6份的话,小明的行程应为5份,则其离终点还有1份距离=米。【练习】小刚与小勇进行50米赛跑,结果:当小刚到达终点时,小勇还落后小刚10米;第二次赛跑,小刚的起跑线退后10

2、米,两人仍按第一次的速度跑,比赛结果将是_解:小刚到达终点时,二人的路程分别为50米和40米,路程之比为5:4。若小刚退后10米,当到达终点时其路程为60米,由于速度不变,从而路程之比也不变,此刻乙跑了60÷5×4=48米,还差2米才到终点,因此还是小刚胜出。【点评】在赛跑问题中,多数时候隐含了时间相等的条件,从而路程之比=速度之比的正比例关系式会得到大量应用。【例 2】 一辆车从甲地开往乙地.如果车速提高20,可以比原定时间提前一小时到达;如果以原速行驶240千米后,再将速度提高25,则可提前40分钟到达.那么甲、乙两地相距多少千米【分析】这是一道“隐性”比例行程题,但其

3、标志很明显百分数,一般说来凡题目中出现百分比应立即想到将其转化为比例进行研究。例如本题中,车速提高20%意味着原速度与现速度之比为5:6,车速提高25%意即原速度与现速度之比是4:5。【解】按照题中的“;”形成的两部分分别进行分析:车速提高20%,从而速度之比为5:6,则时间之比为6:5,已知提速前后所用时间差为1小时,可见原速度走完全程需要6小时,提速后需要5小时。而在原速行驶240千米后,剩余部分路程提速25%,即速度之比为4:5,则所用时间之比为5:4,而已知提速前后所用时间之差为40分钟,从而不难求剩余路程若按原速度行驶需要时间40×5=200分钟=小时,从而前240千米用时

4、小时,则原速度为千米/小时。从而甲乙两地距离应为千米。【点评】本题虽难度不大,但作为比例解行程的方法十分典型,有必要熟练掌握题目中涉及到的几个模型。这些模型与几何中五大模型的作用类似,会在行程问题中反复出现,且标志明显。模型1:百分比到比例的转化。模型2:提速少时,由提速或降速所造成的时间差,只产生在提速和降速的路程中。模型3:比差问题,类似和差、和倍、差倍,已知比和差分别求大小数的方法应熟练掌握。【练习】一辆汽车从甲地开往乙地,如果车速提高20%,可以提前1小时到达,如果按原速度行驶一段距离后,再将速度提高30%,也可以提前1小时到达,那么按原速行驶了全程的几分之几?解:车速提高20%,即速

5、度之比为5:6,从而时间比为6:5,已知时间差为1小时,则原用时为6小时。原速行驶一段距离后,再将速度提高30%,仍然提前1小时到达,这个时间差只能发生在提速部分,这段速度之比为10:13,从而时间之比为13:10,不难求原速度行驶用时1÷3×13=小时,从而先行驶的部分用时6-=小时,其占比为÷6=【例 3】 甲、乙两人分别从A、B两地同时出发,相向而行,在途中C点相遇。如甲的速度增加10,乙每小时多走300米,还在C相遇;如果甲早出发1小时,乙每小时多走1000米,则仍在C相遇。那么两人相遇时距B多少千米?【分析】此题有个明显的特征,即三种方式最终相遇地点一样

6、,这实际明确告知我们三种方式之下路程之比相同!而题目要求两人相遇时距B多少千米,实际是求乙的路程,若能求得乙的速度和时间则问题可解。【解】按照题中的“;”形成的两部分进行来研究:在甲提速10%,乙提速300米后甲乙相遇地点不变,路程之比没变,可见提速前后两人的速度之比也保持不变。从而若甲提速10%的话,乙提速300米也应为10%,从而不难求得乙的原速度为3千米/小时。甲提前出发1小时,乙提速1000米后,两人依然在C点相遇。换句话说其实就是:乙在提速1000米后比平时少用1个小时到达C点。而乙在提速1千米后,前后速度之比为3:4,则所用时间之比应为4:3,少用的1小时为1份,则乙原用时应为4小

7、时。如此乙的速度和时间都已求得,则其路程为3×4=12千米。即两人相遇时距B 12千米。【点评】在本题中,双双提速后速度之比保持不变的关系式是不难发现的。比较难理解的是甲提前1小时出发的意义:由于甲速度未变,从而其到达C点所需的时间是不变的,由此发现乙到达C点实际上是比提速前少用了1小时。此处又是比差模型的典型应用。发现“时间差”其实是个不错的标志物。【例 4】 甲、乙两人同时地出发,在、两地之间匀速往返行走,甲的速度大于乙的速度,甲每次到达地、地或遇到乙都会调头往回走,除此以外,两人在之间行走方向不会改变,已知两人第一次相遇的地点距离地米,第三次的相遇点距离地米,那么第二次相遇的地

8、点距离地 。【分析】研究甲乙二人的行为轨迹后容易发现,走路比较快的甲实际是在乙和B地之间做折返跑往复运动。到达B则折返,遇到乙再折返。需要注意的是,在“折返运动模型”中,二人的“路程和”是个令人舒服的量两个全程。另外本题中乙的方向从未改变,只是从一个相遇点直线到下一个相遇点。其路程也是比较容易得到的量。如图中所示C、D、E依次为第一次、第二次、第三次的相遇点。【解】设第二次相遇的地点与B的距离DB为。不难发现:第一次相遇到第二次相遇甲乙二人的路程和为1800×2=3600米(其中乙的路程CD=1800-);第二次相遇到第三次相遇甲乙二人的路程和为2(其中乙的路程为DE=-800);由

9、于甲乙的速度从未改变,则乙的路程占甲乙路程和的比例应该是一定的,从而有:。解得=1200米,即第二次相遇时两人距B地1200米。【铺垫】甲乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离。解:作为多次相遇问题,有必要研究每次相遇时的路程和。第一次相遇时,两人的路程和为1个全程,其中甲走了4千米。第二次相遇时,两人的路程和为3个全程,其中甲走了1个全程+3千米。由于甲乙速度固定不变,第二次相遇时路程和是第一次相遇时路程和的3倍,则甲两次的路程也为3倍关系,从而1

10、个全程=3×4-3=9千米。去掉两头距离,两次相遇点距离9-(3+4)=2千米。【点评】本题主要应用行程中另一个常见模型:折返运动模型。折返运动是多次相遇的一种类型,由于隐含了甲乙速度不变的条件,则任意时间段内,不论是甲乙的路程之比,还是甲与全程之比或者乙与全程之比均保持不变。甲乙二人的路程和时常为“2个全程”。这是一个经常需要讨论的量。折返跑模型应熟练掌握。【例 5】 A、B、C三辆汽车以相同的速度同时从甲市开往乙市,开车后1小时A车出了事故,B和C车照常前进A车停车修理半小时后以原速度的继续前进,B、C两车行至距离甲市300千米处B车出了事故,C车照常前进B车停了半小时后也以原速

11、度的继续前进结果到达乙市的时间C车比B车早1小时,B车比A车早1小时,求甲、乙两市的距离为多少千米?【分析】此题为典型的多人行程问题,且过程较为复杂,对此有必要对每个人各自的行程轨迹进行单独独立分析。进而对相关人进行两两分析。例如本题中,需要首先分析A,B,C各自的过程。【解】由于故障后的速度统一为原速的,若设原速度为5份,则故障速度为4份。过程分析如下:C:以5份的速度行驶完全程,第一个到达终点。A:以5份的速度行驶1小时后,停车小时,再以4份的速度行驶完全程,最后一个到达终点。B:以5份的速度行驶300千米后,停车小时,再以4份的速度行驶完全程,第二个到终点。另已知C比B早到1小时,B比C

12、早到1小时。仅分析A、C二人的过程:A、C共同行驶1小时后,A停车小时,后减速行驶,最终比C多用2小时到达。除去停车的小时,A在减速路段上的行驶时间实际比C多用小时,而这段路上A、C速度之比为4:5,则所用时间之比为5:4,不难求这段路A用时小时,C用时6小时。而对于C来说,全程用时6+1=7小时,则B全程用时7+1=8小时。再分析B、C二人的过程:B、C共同行驶300千米后,B停车小时,后减速行驶,最终比C多用1小时到达,除去停车的小时,B在减速的路段上的行驶时间实际比C多用小时,而在这段路上B、C速度之比也是4:5,从而时间之比为5:4,不难求B用时小时,C用时2小时。可见,B在前300公

13、里用时8-0.5-2.5=5小时,则A、B、C共同的原速度=300÷5=60千米/小时。由C的行驶过程可求得全程=60×7=420千米。【点评】此题首先是一道多人行程问题,多人行程问题最基本的分析方法就是对每个人的行程轨迹进行单独分析,将全过程进行分解,缕清思路。另一方面,本题是“提速-少时”模型以及“比差”模型的反复的应用。若能熟练掌握这两个模型,则有可能较快的解决问题。【例 6】 甲、乙两车分别从相距180千米的A、B两地同时出发相向而行,两车在距离A地80千米处相遇,若出发半小时后甲车突然提速50%,那么两车恰好在AB的中点相遇,如果出发后20分钟甲车把速度变为原来的

14、一半,那么相遇地点将距A地_千米;【分析】当两车在距A地80千米处相遇时,甲路程=80千米,乙路程=100千米,则甲乙的速度之比=4:5,若甲速度为4份,则乙速度为5份。【解】甲出发半小时后提速50%就能与乙车在中点相遇,这说明甲的平均速度应等于乙的速度,而甲原速为4份,提速50%达到6份,从而整个过程可描述为甲用4份的速度行驶小时后再用6份的速度行驶了小时,最终平均速度为5份,从而路程=,不难求得小时,可见相遇时甲乙均用时0.5+0.5=1小时,由于行驶路程均为180÷2=90千米,显见乙的速度=90÷1=90千米/小时,则甲的速度应为90÷5×4=7

15、2千米/小时。在甲乙速度均已求得的情况下来再来分析另一个相遇过程,甲在以72千米/小时的速度行驶20分钟后,把速度降低到一半,其实就是36千米/小时,最终与乙相遇,不难求20分钟即小时后的剩余路程=千米,进而求得相遇所需的额外时间=小时,可见整个相遇过程共用时小时,其中乙的路程=千米,即相遇地点距A地180-120=60千米。【点评】对“平均速度”的分析是解决本题的钥匙。【例 7】 A、B两地相距600千米,甲坐车从A地到B地,2小时后,乙和丙也同时从A地出发前往B地,又过了3个小时,乙追上了甲并继续向前走,到达B地后迅速返回,途中与甲再次相遇时,正好丙也追上了甲.已知丙的速度比甲的速度快,那么甲的速度是每小时多少千米?【分析】作为三人行程问题,有必要对各人的行踪进行单独分析,进而两两关联分析。【解】题目最后提到丙的速度比甲快,即两人速度比为10:9。分析知甲丙之间为追及关系,甲提前2小时出发,最后时刻丙追上甲,在这个过程中丙甲时间比为速度比的反比,即为9:10,可见甲用时20小时,丙用时18小时,当然此时乙也走了18小时了。进而单独分析甲乙之间的关系,一开始也为追及关系,甲出发2小时后乙出发,并在3小时后追上甲,此处说明二者所用时间之比为甲:乙=5:3,从而二者速度之比为3:5。乙在追上甲后继续

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论