抛物线的焦点弦_经典性质及其证明过程_第1页
抛物线的焦点弦_经典性质及其证明过程_第2页
抛物线的焦点弦_经典性质及其证明过程_第3页
抛物线的焦点弦_经典性质及其证明过程_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.有关抛物线焦点弦问题的探讨 过抛物线(p0)的焦点F作一条直线L和此抛物线相交于A、B两点 结论1:结论2:若直线L的倾斜角为,则弦长证: (1)若 时,直线L的斜率不存在,此时AB为抛物线的通径,(2)若时,设直线L的方程为:即 代入抛物线方程得由韦达定理由弦长公式得结论3: 过焦点的弦中通径长最小 的最小值为,即过焦点的弦长中通径长最短.结论4: 结论5: (1) (2) x1x2= 证 结论6:以AB为直径的圆与抛物线的准线相切 证:设M为AB的中点,过A点作准线的垂线AA1, 过B点作准线的垂线BB1, 过M点作准线的垂线MM1,由梯形的中位线性质和抛物线的定义知 故结论得证 结论7

2、:连接A1F、B1 F 则 A1FB1F 同理 A1FB1 F结论8:(1)AM1BM1 (2)M1FAB (3)(4)设AM1 与A1F相交于H ,M1B与 FB1相交于Q 则M1,Q,F ,H四点共圆(5)证:由结论(6)知M1 在以AB为直径的圆上 AM1BM1 为直角三角形, M1 是斜边A1 B1 的中点 M1FAB AM1BM1 所以M1,Q,F,H四点共圆, 结论9: (1)O、B1 三点共线 (2)B,O,A1 三点共线 (3)设直线AO与抛物线的准线的交点为B1,则BB1平行于X轴(4)设直线BO与抛物线的准线的交点为A1,则AA1平行于X轴证:因为,而所以所以三点共线。同理可征(2)(3)(4)结论10: 证:过A点作AR垂直X轴于点R,过B点作BS垂直X轴于点S,设准线与轴交点为E,则 同理可得 结论11: 证: (4) x1x2= 假设 结论12:过抛物线的焦点作两条互相垂直的弦AB、CD,则 推广与深化:深化 1:性质5中,把弦AB过焦点改为AB过对称轴上一点E(a,0),则有证:设AB方程为my=x-a,代入得:,深化2: 性质12中的条件改为焦点弦AB不垂直于x轴,AB的中垂线交x轴于点R,则证明:设AB的倾斜角为a,直线AB的方程为:,代入得:,即:由性质1得,又设AB的中点为M,则,深化3:过抛物线的焦点F作n条弦,且它们等分周角2,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论