




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、情形1,042 qp的实根:的实根:特征方程有两个不相等特征方程有两个不相等21 于是,于是,有两个特解:有两个特解:方程方程0 yqypy,xxeyey 211并并且且xxxeee)(211 不不是是常常数数,的通解为的通解为因此方程因此方程0 qypyyxxeCeCy2121 第1页/共21页情形2,042 qp实根:实根:特征方程有两个相等的特征方程有两个相等的 21于是,于是,有一个特解:有一个特解:方程方程0 yqypyxey 1,下下面面寻寻找找另另一一个个特特解解2y不为常数不为常数且要求且要求12yy,设设)(12xuyy ,即即)(2xueyx 则则,)(2uueyx ,)2
2、(22 uuueyx 第2页/共21页,得,得代入方程代入方程0 qypyy,0)()2( 2 uqeuupeuuuexxx 即即,0)()2(2 uqpupuex 由于由于,02 qp ,02 p 则则有有0 u,不妨取不妨取xu 则另一个特解为则另一个特解为xxey 2的通解为的通解为从而方程从而方程0 qypyyxxxexCCxeCeCy )(2121 第3页/共21页情形3,042 qp根根:特特征征方方程程有有一一对对共共轭轭复复)0(2 , 1 i于是,于是,有两个特解:有两个特解:方程方程0 yqypy,xiey)(1 xiey)(2 利利用用欧欧拉拉公公式式: sincosie
3、i 于是,于是,xixeey 1,)sin(cosxixex xixeey 2,)sin(cosxixex 第4页/共21页而而)(2121yy ,xex cos )(2121yyi ,xex sin 且且xxexexx cotsincos 不是常数不是常数的通解为的通解为因此因此0 qypyy)sincos(sincos2121xCxCexeCxeCyxxx 定义定义 由常系数齐次线性方程的特征方程的根由常系数齐次线性方程的特征方程的根确定其通解的方法称为确定其通解的方法称为特征方程法特征方程法. .第5页/共21页例1.求下列方程的特解或通解;032)1( yyy解解,特征方程特征方程03
4、22 特征根:特征根:,3121 所所以以通通解解为为xxeCeCy321 第6页/共21页;,2402)2(00 xxyyyyy,特征方程特征方程0122 特征根:特征根:121 所以通解为所以通解为xexCCy)(21 代入通解中,得代入通解中,得将将40 xy;41 C从从而而xexCy)4(2 即即有有,)4(22CxCeyx 得得代代入入20 xy62 C于于是是所所求求特特解解为为xexy)64( 解解第7页/共21页,特特征征方方程程0542 特特征征根根:i 22 , 1 所以通解为所以通解为)sincos(212xCxCeyx 注注线性方程的求解线性方程的求解一阶或高阶常系数
5、齐次一阶或高阶常系数齐次可推广到可推广到法,法,利用特征值求通解的方利用特征值求通解的方求解一阶方程求解一阶方程例如例如03 yy,特征方程特征方程03 特征根特征根3 因此通解为因此通解为xCey3 054)3( yyy解解第8页/共21页的通解情况表:的通解情况表:阶常系数齐次线性方程阶常系数齐次线性方程n阶常系数齐次线性方程阶常系数齐次线性方程n001)1(1)( ypypypynnn特征方程特征方程00111 pppnnn 单实根单实根) i (xCe 一项:一项: i 一对单复根一对单复根ii)()sincos(21xCxCex 两两项项: 重实根重实根kiii)(项:项:k)(12
6、1 kkxxCxCCe ik 重复根重复根)iv(项:项:k2xxCxCCekkx cos)(121 sin)(121xxDxDDkk 第9页/共21页求下列方程通解求下列方程通解例例2;054)1()3()4()5( yyy解解,特特征征方方程程054345 特征根:特征根:0 ,重重)3(i 2 所所求求通通解解为为 y)(23210 xCxCCex )sincos(542xCxCex )sincos(5422321xCxCexCxCCx 第10页/共21页,特征方程特征方程014 特征根:特征根:22442121 而而2222)1( 0)21)(21(22 ,)1(222 , 1i ,)
7、1(224 , 3i 故通解为故通解为 y)22sin22cos(2122xCxCex )22sin22cos(4322xCxCex 0)2()4( yy解解第11页/共21页.044的通解的通解求方程求方程 yyy解解特征方程为,0442 rr解得,221 rr故所求通解为.)(221xexCCy 练习练习1 1第12页/共21页.052的通解的通解求方程求方程 yyy解解特征方程为,0522 rr解得,2121jr ,故所求通解为).2sin2cos(21xCxCeyx 练习练习2 2第13页/共21页注意注意n次代数方程有n个根, 而特征方程的每一个根都对应着通解中的一项, 且每一项各一
8、个任意常数.nnyCyCyCy 2211第14页/共21页特征根为, 154321jrrjrrr 故所求通解为.sin)(cos)(54321xxCCxxCCeCyx 解解, 01222345 rrrrr特征方程为, 0)1)(1(22 rr.022)3()4()5(的通解的通解求方程求方程 yyyyyy练习练习3 3第15页/共21页四、小结二阶常系数齐次微分方程求通解的一般步骤:(1)写出相应的特征方程;(2)求出特征根;(3)根据特征根的不同情况,得到相应的通解. (见下表)第16页/共21页02 qprr0 qyypy 特征根的情况特征根的情况 通解的表达式通解的表达式实根实根21rr 实根实根21rr 复根复根 ir 2, 1xrxreCeCy2121 xrexCCy2)(21 )sincos(21xCxCeyx 第17页/共21页解解:, 0 y ,ln22yyyyy ,ln yyy ,lnyyyx ,lnlnyy 令yzln 则, 0 zz特征根1 通解xxeCeCz 21.ln21xxeCeCy 思考题思考题求微分方程 的通解. yyyyyln22 第18页/共21页一一、 求求下下列列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025建筑项目招标投标合同地下管线工程施工监理服务协议书
- 2025农产品买卖合同范本
- 合资经营企业协议
- 2025深圳南山区产业发展专项资金科技创新分项项目资金使用合同
- 经营管理合作协议书范本
- 中介房屋租赁协议
- 2024年份9月离子液体EPC总承包合同电导率验收标准
- 被打签订谅解协议书
- 2025年03月国家体育总局事业单位公开招聘应届毕业生3个岗位公开招聘笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 江西省石城县市级名校2025届初三第三次调研考英语试题含答案
- 2025年山东省东营市广饶县一中中考一模英语试题(原卷版+解析版)
- DL-T 1476-2023 电力安全工器具预防性试验规程
- HEY JUDE歌词逐字逐句教唱
- 动能和势能的相互转化
- 红绿灯控制系统的设计与制作
- DPP-4抑制剂的同与异-课件
- 不负食光 拒绝浪费-主题班会课件
- wagner假体专题知识培训
- 太原市修缮土建工程预算定额
- 北大中国通史课件之——从大蒙古国到元朝
- 湖北环境监测服务收费标准
评论
0/150
提交评论