下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、文档来源为 :从网络收集整理 .word 版本可编辑 .欢迎下载支持 .Nakagami-m衰落信道仿真分析专业电子信息工程姓名康鸿博学号00251文档收集于互联网,如有不妥请联系删除.文档来源为 :从网络收集整理 .word 版本可编辑 .欢迎下载支持 .摘要随着科学技术的发展,通信的应用领域越来越广泛,如深空通信、光通信等都是比较新的研究方向,面对越来越复杂的信道环境,传统经典的信道模型在应用上往往受限,或者需要针对具体的环境做出改进以提高精度,随着信道建模与仿真相关课题的研究逐步深入,通用信道模型逐渐成为研究的热点,本课题所研究的基于 Nakagami 的信道仿真与实现就是立足于信道的通
2、用性,既包含了经典的信道模型,又兼顾更广泛的应用范围。本篇论文主要的内容包括 Nakagami 衰落概率密度函数的理论分析、 Nakagami 衰落随机数的 Matlab 仿真实现、及其概率密度随 m 参数而变化的统计特性图。其中最后的仿真实验是通过本文后面的附录程序给出的。1 Nakagami-m衰落的背景介绍研究相关 Nakagami-m 衰落信道仿真模型的生成方法。相关衰落信道模型是进行多天线系统、分集研究的重要基础 ,通过分析 Nakagami-m 分布特性 ,提出了一种高效的相关 Nakagami-m 衰落信道仿真模型的生成方法 ,本方法适用于任意衰落参数 ,可以产生多条任意相关系数
3、的等衰落相关 Nakagami-m 衰落信道仿真模型。数值仿真结果表明 , 同以往算法 ,利用更小的运算量 ,得到了更高精度的相关 Nakagami-m 衰落信道仿真模型。深空探测是人类在 21 世纪的三大航天活动之一。 21 世纪以来,经济全球化、科技发展增速、能源危机和环境污染问题是国际公认的当代社会主要特征,在此背景下,如何更好的开发利用深空资源将成为各国共同关注的热点,新一轮的深空探测浪潮正在兴起。深空通信系统是深空探测的纽带,是深空探测任务成功的重要保障之一。设计并实现符合深空信道传输特性的深空信道仿真器,在深空通信领域具有重要的实用价值。基于以上的需求,本论文研究的基于相关 Nak
4、agami 衰落的信道仿真与硬件实现具有很高的研究价值和广阔的应用前景。2. Nakagami衰落概率密度函数的理论分析Nakagami-m分布不假定直接视距分量的存在,而是采用gamma 分布的密度函数来拟合实验数据,得到近似分布,因而更加具有一般性,Nakagami-m分布的概率密度函数为:2文档收集于互联网,如有不妥请联系删除.文档来源为 :从网络收集整理 .word 版本可编辑 .欢迎下载支持 .其中, 表示衰落因子;,表示信号平均功率;,为 Gamma 函数。Nakagami-m分布具有以下主要特性:1当 m =0.5时, Nakagami-m 分布成为单边Gaussian 分布;2
5、. 当 m =1 时, Nakagami-m分布即为Rayleigh 分布;3.m 越大,对应的信道衰落越小,m= 时表示没有衰落;4. 多个独立 Rayleigh 变量之和服从Nakagami-m分布;如果信号的包络服从衰落因子为 m(m 为整数 ) 的 Nakagami-m 分布,那么对应的功率服从 Gamma 分布;如果令,那么 Nakagami-m分布近似于Rice 分布;从上述 Nakagami-m 分布的特性分析可以看出,服从 Nakagami-m 分布的变量可以通过服从 Gamma 分布的变量得到,自由度为 n 的 Gamma 分布的变量又可以由 Gaussian 变量得到。利用
6、这种分解特性是最常用最便捷得到Nakagami-m信道变量的实现思路,按照这一思路,可以较为简单的产生某些特殊的单Nakagami-m信道衰落变量。要产生更具有一般意义的任意衰落参数的多支路相关Nakagami-m信道衰落变量,问题的核心就转为如何处理几个不同变量之间参数关系的问题了,主要包括衰落参数和相关系数等。3. Nakagami衰落随机数的Matlab仿真实现Nakagami-m分布变量可以通过下式所述思想来实现:主要有以下两种方法实现Nakagami 衰落的图形实现:1. 整数 Nakagami-m 衰落信道仿真模型的产生方法,这种方法可以通过较小的运算量得到整数衰落因子的 Naka
7、gami-m 分布变量,但是存在两个突出的问题,首先,整数衰落因子的限制使得这种方法只能在很小的应用范围内得以使用,再者,3文档收集于互联网,如有不妥请联系删除.文档来源为 :从网络收集整理 .word 版本可编辑 .欢迎下载支持 .Nakagami-m 变量的功率相关系数来近似包络相关,这种近似的误差是很大的。而这种对信道模型的粗近似处理,对模型的合理使用的影响很大。2. 通过对分析描述了Nakagami-m分布变量的产生方法,但同时也存在一个主要问题,就是对y 的近似分解带来了误差,这种误差在小衰落因子 ( m 1.5) 时误差较大,也就是说,当模拟严重的信道衰落时,这种模型产生的变量与理
8、论分布误差较大。本文通过 matlab 程序实现对Nakagami 衰落随机数的Matlab 仿真实现。以下具体内容为matlab 的仿真实现:上图是 matlab 仿真 nakagami 分布仿真。上面结果是在实际的仿真环境下进行的,由图可以得到仿真结果不是平滑变化的,它是根据信道的情况发生变化的。当 m 的取值越大的时候,信号的衰落就会减弱。下面理想信道的仿真结果可以看出另一种具体形象,由于 4 对应的 y 值过大导致整个图形发生了一些变化。由上图的 m 变化得知当m=1 时, Nakagami-m分布即为 Rayleigh 分布,系数m越大,对应的信道衰落越小,可以推出当m= 时表示没有
9、衰落。5. 结论本文设计了一种相关Nakagami-m衰落信道仿真模型的产生方法。本方法适用于任意衰落参数,可以产生多条任意相关系数的等衰落相关Nakagami-m衰落信道仿真模型。仿真分析表明,同以往的算法相比,运算量较小,而且在相关特性和概率分布特性方面的精度都优于其他方法。通过matlab 对 Nakagami 衰落随机数的仿真实现,我们可以很形象的观察到Nakagami 衰落随机数的一些特点和随m 变化的一些规律,这对研究并实现 Nakagami 衰落提供了很好的参考依据,对以后的科研具有很重要的意义和价值。附录程序如下:用 monte carlo仿真 nakagami 分布4文档收集
10、于互联网,如有不妥请联系删除.文档来源为 :从网络收集整理 .word 版本可编辑 .欢迎下载支持 .函数程序: nakagami.mfunction realamp = nakagami(m, omaga)r = 0:0.1:2;dt = 0.01;gam = 0;for n = 0:0.01:20gam = gam + (n.(m-1).*exp(-n).*dt;endtosam = 0;tocnt = 0;for rr = 1:21pdf(rr) = (2*mm)*(r(rr)(2*m-1)*(exp(-(m/omaga)*(r(rr)2)/(gam*omagam);sam(rr) =
11、round(pdf(rr)*10);tosam = tosam + sam(rr);cnt(rr) = 0;endtoamp = 0;for n1 = 1:400amp(n1) = round(rand*20);for n2 = 1:21if amp(n1)=round(r(n2)*10)cnt(n2) = cnt(n2) + 1;break;endendif cnt(n2) sam(n2)cnt(n2) = cnt(n2) - 1;amp(n1) = -1;end5文档收集于互联网,如有不妥请联系删除.文档来源为 :从网络收集整理 .word 版本可编辑 .欢迎下载支持 .endfor n3
12、 = 1:21tocnt = tocnt + cnt(n3);endfor n4 = 1:200number = round(rand*400);if number = 0number = round(rand*400);endrealamp = amp(number)/10;if realamp = -0.1break;endendreturn主程序:main.mm = 1;omaga = 1;r = 0:0.1:2;for n = 1:6000realamp = nakagami(m, omaga);amp(n) = realamp;endfor n4 = 1:21cnt1(n4) = 0
13、;endfor n1 = 1:21for n2 = 1:6000if round(amp(n2)*10) = round(r(n1)*10)6文档收集于互联网,如有不妥请联系删除.文档来源为 :从网络收集整理 .word 版本可编辑 .欢迎下载支持 .cnt1(n1) = cnt1(n1) +1;endendendfor n3 = 1:21cnt1(n3) = cnt1(n3)/600;endplot(r,cnt1,b);hold on;m = 3;omaga = 1;r = 0:0.1:2;for n = 1:6000realamp = nakagami(m, omaga);amp(n) =
14、 realamp;endfor n4 = 1:21cnt3(n4) = 0;endfor n1 = 1:21for n2 = 1:6000if round(amp(n2)*10) = round(r(n1)*10)cnt3(n1) = cnt3(n1) +1;endendendfor n3 = 1:21cnt3(n3) = cnt3(n3)/600;endplot(r,cnt3,r);7文档收集于互联网,如有不妥请联系删除.文档来源为 :从网络收集整理 .word 版本可编辑 .欢迎下载支持 .hold on;m = 4;omaga = 1;r = 0:0.1:2;for n = 1:6000
15、realamp = nakagami(m, omaga);amp(n) = realamp;endfor n4 = 1:21cnt5(n4) = 0;endfor n1 = 1:21for n2 = 1:6000if round(amp(n2)*10) = round(r(n1)*10)cnt5(n1) = cnt5(n1) +1;endendendfor n3 = 1:21cnt5(n3) = cnt5(n3)/600;endplot(r,cnt5,black);hold on;xlabel(r);ylabel(pdf);legend(m=1,m=3,m=4);grid on;hold off理想情况下的nakagami 分布x=0:0.01:2;8文档收集于互联网,如有不妥请联系删除.文档来源为 :从网
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 外墙保温施工方案
- 心衰指南课件教学课件
- 血液灌流课件教学课件
- 经验效应课件教学课件
- 烦恼盒子课件教学课件
- 《数学物理方法》第4章测试题
- 南京工业大学浦江学院《商务谈判》2022-2023学年第一学期期末试卷
- 分式的通分说课稿
- 吨的认识的说课稿
- 中国广播电视音像资料馆施工组织设计
- GB/T 44570-2024塑料制品聚碳酸酯板材
- 2024年学校食堂管理工作计划(六篇)
- 体育赛事组织服务协议
- 天车工竞赛考核题
- 民办非企业单位理事会制度
- 临床输血的护理课件
- 民生银行在线测评真题
- 人教版(PEP)小学六年级英语上册全册教案
- 大学美育学习通超星期末考试答案章节答案2024年
- 2024年人教版七年级上册地理期中测试试卷及答案
- 2024年英语专业八级汉译英试题真题
评论
0/150
提交评论