电厂热力系统计算_第1页
电厂热力系统计算_第2页
电厂热力系统计算_第3页
电厂热力系统计算_第4页
电厂热力系统计算_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、本科毕业设计(论文)660 MW凝汽式发电机组热力系统的设计学 院: 材料与能源学院 专 业: 热能与动力工程 (热电工程方向) 年级班别: 2007级(1)班 姓 名: 林 学 号: 3107007838 指导教师: 柯秀芳副教授 2011年 5月摘 要高参数大容量凝汽式机组是目前新建火电机组的主力机型,本文针对660MW亚临界凝汽式发电机组热力系统进行设计,对拟定的凝汽式发电机组原则性热力系统进行设计计算和热经济性计算,绘制原则性热力系统图、全面性热力系统图。本机组选用德国BABCOCK公司生产的2208t/h自然循环汽包炉;汽轮机为GE公司的亚临界压力、一次中间再热660MW凝汽式汽轮机

2、。共设8级不调节抽汽,其中3级高压加热器,4级低压加热器,及一级除氧器。主蒸汽初参数:16.68Mpa,538,再热蒸汽参数:3.232Mpa,538,排汽压力4.4kpa。热经济性指标:全厂效率40.50%,发电标准煤耗0.29504 kg/kWh。计算误差:汽轮机进汽量计算误差0.901%,汽轮机内功计算误差0.55%。关键词:电厂,热力系统,锅炉,汽轮机AbstractHigh-power and high parameters of condensing unit is the main of the new thermal power units.A thermal system o

3、f a subcritical 660MW condensing unit is designed in this paper.The baseless thermal systems and thermal economy is designed and calculated. And baseless Thermal system diagram and Comprehensive Thermal system diagram is drew.A 2208t/h of natural circulation drum boiler produced by German BABCOCK is

4、 selected for this unit.The turbine is subcritical pressure, one reheat 660MW Condensing Steam Turbine produced by GE. There are a total of eight level steam extraction. Including three high-pressure heater, four low pressure heaters and a deaerator. The main steam parameters is as follow: 16.68 Mpa

5、, 538, reheat steam parameters:3.232 Mpa, 538. Exhaust steam pressure 4.4 kpa.Thermal Economy index is as follow: The efficiency of the whole plant 40.50%; Generation standard coal consumption 0.29504 kg/kWh.Calculation errors is as follow: Throttleflow error 0.901%,Counter-balance checking error 0.

6、55%.Key words:Power Plant,Thermal System,Boiler,Steam Turbine目 录1绪 论12热力系统与机组资料42.1.热力系统简介42.2.原始资料53热力系统计算73.1.汽水平衡计算73.2.汽轮机进汽参数计算83.3.辅助计算83.4.各加热器进、出水参数计算103.5.高压加热器组抽汽系数计算163.6.除氧器抽汽系数计算173.7.低压加热器组抽汽系数计算183.8.凝汽系数计算203.9.汽轮机内功计算213.10.汽轮机内效率、热经济指标、汽水流量计算223.11.全厂性热经济指标计算244反平衡校核265辅助系统设计、选型285

7、.1.主蒸汽系统285.2.给水系统285.3.凝结水系统285.5.旁路系统295.6.补充水系统295.7.阀门306结 论32参 考 文 献34致 谢351 绪 论火力发电厂简称火电厂,是利用煤炭、石油、天然气作为燃料生产电能的工厂。其能量转换过程是:燃料的化学能热能机械能电能。最早的火力发电是1875年在巴黎北火车站的火电厂实现的。随着发电机、汽轮机制造技术的完善,输变电技术的改进,特别是电力系统的出现以及社会电气化对电能的需求,20世纪30年代以后,火力发电进入大发展的时期。火力发电机组的容量由200兆瓦级提高到300600兆瓦级(50年代中期),到1973年,最大的火电机组达130

8、0兆瓦。大机组、大电厂使火力发电的热效率大为提高,每千瓦的建设投资和发电成本也不断降低。到80年代后期,世界最大火电厂是日本的鹿儿岛火电厂,容量为4400兆瓦。但机组过大又带来可靠性、可用率的降低,因而到90年代初,火力发电单机容量稳定在300700兆瓦。进入21世纪后,为提高发电效率,我国对电厂机组实行上大压小政策。高参数大容量凝汽式机组成为目前新建火电机组的主力机型,全世界数十年电站发展史的实践表明,火电设备逐渐大容量化是不可抗拒的发展趋势。人类已进入21世纪,“能源、环境、发展”是新世纪人类所面临的三大主题。这三者之中,能源的合理开发与利用将直接影响到环境的保护和人类社会的可持续发展。作

9、为能源开发与利用的电力工业正处在大发展的阶段,火力发电是电力工业的重要领域,环境保护和社会发展要求火力发电技术不断发展、提高。在已经开始的21世纪,火力发电技术发展趋势是我们十分关注的问题。就能量转换的形式而言,火力发电机组的作用是将燃料(煤、石油、天然气)的化学能经燃烧释放出热能,再进一步将热能转变为电能。其发电方式有汽轮机发电、燃气轮机发电及内燃机发电三种。其中汽轮机发电所占比例最大,燃气轮机发电近年来有所发展,内燃机发电比例最小。汽轮机发电的理论基础是蒸汽的朗肯循环,按朗肯循环理论,蒸汽的初参数(即蒸汽的压力与温度)愈高,循环效率就愈高。目前蒸汽压力已超过临界压力(大于22.2MPa),

10、即所谓的超临界机组。进一步提高超临界机组的效率,主要从以下两方面入手。1. 提高初参数,采用超超临界初参数的提高主要受金属材料在高温下性能是否稳定的限制,目前,超临界机组初温可达538576。随着冶金技术的发展,耐高温性能材料的不断出现,初温可提高到600700。如日本东芝公司1980年着手开发两台0型两段再热的700MW超超临界汽轮机,并相继于1989年和1990年投产,运行稳定,达到提高发电端热效率5%的预期目标,即发电端效率为41%,同时实现了在140分钟内启动的设计要求,且可在带10额定负荷运行。在此基础上,该公司正推进1型(30.99MPa、593/593/593)、2型(34.52

11、Mpa,650/593/593)机组的实用化研究。据推算,超超临界机组的供电煤耗可降低到279g/kWh2. 采用高性能汽轮机汽轮机制造技术已很成熟,但仍有进一步提高其效率的空间,主要有以下三种途径:首先是进一步增加末级叶片的环形排汽面积,从而达到减小排汽损失的目的。末级叶片的环形排汽面积取决于叶片高度,后者受制于材料的耐离心力强度。日本700MW机组已成功采用钛制1.016m的长叶片,它比目前通常采用的12Cr钢制的0.842m的叶片增加了离心力强度,排汽面积增加了40%,由于降低了排汽损失,效率提高1.6%。其次是采用减少二次流损失的叶栅。叶栅汽道中的二次流会干扰工作的主汽流产生较大的能量

12、损失,要进一步研制新型叶栅,以减少二次流损失。最后是减少汽轮机内部漏汽损失。汽轮机隔板与轴间、动叶顶部与汽缸、动叶与隔板间均有一定间隙。这些部位均装有汽封,以减少漏汽损失。要研制新型汽封件以减少漏汽损失。发展大机组的优点可综述如下:1. 降低每千瓦装机容量的基建投资随着机组容量的增大,投资费用降低。在一定的范围内,机组的容量越大越经济。一般将这个范围称为容量极限。 以20万千瓦燃煤机组的建设费比率为100%。30万千瓦燃煤机组为93%,到60万千瓦时进一步下降为84%。容量每增加一倍,基建投资约降低5%。2. 提高电站的供电热效率机组容量越大,电站的供电热效率也越高。在15万千瓦以前,热效率的

13、上升率较高。达到15万千瓦以后,热效率上升趋于和缓。原因在于容量在15万千瓦前,蒸汽参数随容量增加而提高的缘故。容量超过15万千瓦后,蒸汽参数变化不大。欲取得更高的供电热效率,只有采用超临界领域的蒸汽参数。16.9Mpa,566/538,50万千瓦机组的供电热效率为38.6%。24.6Mpa538/538,90万千瓦机组的供电热效率则高达40.7%,与前者相比约提高2.1%。 3. 降低热耗以15万千瓦机组的单位热耗比率为100%,当机组容量增加到60万千瓦时,降低1.3%;由30万千瓦增加到60万千瓦时降低1.0%。由60万千瓦提高到120万千瓦时降低0.5%左右。 4. 减少电站人员的需要

14、量15万千瓦机组,需0.45人/兆瓦;到30万千瓦时下降到0.27人/兆瓦;到120万千瓦时会进一步下降到0.12人/兆瓦。这表明,机组容量越大,工资支出越少5. 降低发电成本在燃料价格相同的情况下,机组容量越大,发电成本越低。 机组容量增大,蒸汽参数提高,每千瓦装机容量的建设费用降低,热效率变大,热耗降低,工作人员减少,发电成本降低。这充分显示了大机组的优势。2 热力系统与机组资料2.1. 热力系统简介本机组采用一炉一机的单元制配置。其中锅炉为德国BABCOCK公司生产的2208t/h自然循环汽包炉;气轮机为GE公司的亚临界压力、一次中间再热660MW凝汽式气轮机。全厂的原则性热力系统附图所

15、示。该系统共有八级不调节抽汽。其中第一、二、三级抽汽分别供三台高压加热器,第五、六、七、八级抽汽分别供四台低压加热器,第四级抽汽作为0.9161Mpa压力除氧器的加热汽源。第一、二、三级高压加热器均安装了内置式蒸汽冷却器,上端差分别为-1.7、0、-1.7。第一、二、三、五、六、七级回热加热器装设疏水冷却器,下端差均为5.5。汽轮机的主凝结水由凝结水泵送出,依次流过轴封加热器、4台低压加热器,进入除氧器。然后由气动给水泵升压,经三级高压加热器加热,最终给水温度达到274.8,进入锅炉。三台高压加热器的疏水逐级自流至除氧器,第五、六、七级低压加热器的疏水逐级自流至第八级低压加热器;第八级低加的疏

16、水用疏水泵送回本级的主凝结水出口。凝汽器为单压式凝汽器,汽轮机排气压力4.4kPa。给水泵气轮机(以下简称小汽机)的汽源为中压缸排汽(第四级抽汽),无回热加热其排汽亦进入凝汽器,设计排汽压力为6.34kPa。锅炉的排污水经一级连续排污利用系统加以回收。扩容器工作压力1.55Mpa,扩容器的疏水引入排污水冷却器,加热补充水后排入地沟。锅炉过热器的减温水(3)取自给水泵出口,设计喷水量为66240kg/h。热力系统的汽水损失计有:全厂汽水损失(14)33000kg/h、厂用汽(11)22000kg/h(不回收)、锅炉暖风器用气量为65800kg/h,暖风器汽源(12)取自第4级抽汽,其疏水仍返回除

17、氧器回收,疏水比焓697kJ/kg。锅炉排污损失按计算值确定。高压缸门杆漏汽(1和2)分别引入再热热段管道和均压箱,高压缸的轴封漏汽按压力不同,分别引进除氧器(4和6)、均压箱(5和7)。中压缸的轴封漏汽也按压力不同,分别引进除氧器(10)和均压箱(8和9)。从均压箱引出三股蒸汽:一股去第七级低加(16),一股去轴封加热器SG(15),一股去凝汽器的热水井。2.2. 原始资料2.2.1. 汽轮机型以及参数1. 机组型式:亚临界压力、一次中间再热、四缸四排汽、单轴、凝汽式汽轮机;2. 额定功率 =660MW;3. 主蒸汽初参数(主汽阀前)=3.232MPa,=538;4. 再热蒸汽参数(进汽阀前

18、): 热段=3.232MPa;=538; 冷段=3.567MPa;=315;5. 汽轮机排汽压力=4.4kPa,排汽比焓=2315kJ/kg。2.2.2. 回热加热系统参数1. 机组各级回热抽汽参数见表2-1表2-1 回热加热系统原始汽水参数抽汽管道压损Pj%33353333项 目单位H1H2H3H4H5H6H7H8抽汽压力PjMPa5.9453.6681.7760.9640.4160.2260.1090.0197抽汽焓hjkJ/kg3144.23027.13352.23169.02978.52851.02716.02455.8加热器上端差t-1.70-1.702.82.82.82.8加热器下

19、端差t15.55.55.55.55.55.55.55.5水侧压力pwMPa21.4721.4721.470.9162.7582.7582.7582.7582. 最终给水温度=274.8;3. 给水泵出口压力=21.47MPa,给水泵效率=0.834. 除氧器至给水泵高差=22.4m;5. 小汽机排汽压力=6.27kPa;小汽机排汽焓=2315.6kJ/kg2.2.3. 锅炉型式及参数1. 锅炉:德国BABCOCK-2208t/h一次中间再热、亚临界压力、自然循环汽包炉;2. 额定蒸发量=2208t/h3. 额定过热蒸汽压力=17.42Mpa;4. 额定再热蒸汽压力=3.85MPa;5. 额定过

20、热汽温=541;额定再热汽温=541;6. 汽包压力=18.28MPa;7. 锅炉热效率=92.5%。2.2.4. 其他数据1. 汽轮机进汽节流损失 =4%,中压缸进汽节流损失=2%;2. 轴封加热器压力 =102KPa,疏水比焓=415kJ/kg;3. 机组各门杆漏汽、轴封漏汽等小汽流量及参数见表2-2;4. 锅炉暖风器耗汽、过热器减温水等全厂汽水流量及参数见表2-2;5. 汽轮机机械效率 =0.985;发电机效率 =0.99;6. 补充水温度=20;7. 厂用点率=0.07。表2-2 各辅助汽水、门杆漏汽、轴封漏汽数据汽水代号123456汽水流量1842389662402908209932

21、36流量系数0.00090570.00019120.032570.0014290.0010320.001591汽水比焓3397.23397.21205.23395.33395.33024.3汽水代号789101112汽水流量25721369155127852200065800流量系数0.0012640.00067310.00076260.0013690.010810.03235汽水比焓3024.331693474347431693169汽水代号131415161718汽水流量770003300012705821600300流量系数0.037860.016220.00062440.0028620

22、.00029500.0001475汽水比焓84.13397.23252.23252.23252.23252.23 热力系统计算3.1. 汽水平衡计算3.1.1. 全厂补水率全厂汽水平衡如图3-1所示,各汽水流量见表。将进、出系统的各流量用相对量表示。由于计算前汽轮机进汽量为未知,故预选=2033724kg/h进行计算,最后校核。全厂工质渗漏系数=/=33000/2033724=0.01622锅炉排污系数=/=15000/2033724=0.007376取=40%=6000,=60%=9000=40%=0.002950图3.1 全厂汽水平衡=60%=0.004425扩容器工作压力1.55Mpa扩

23、容蒸汽焓=2792.0kj/kg,扩容蒸汽送进除氧器。扩容饱和水焓=851.7 kj/kg,加热补充水后排地沟。其余各量经计算为厂用汽系数=0.01082减温水系数=0.03257暖风器疏水系数=0.03235由全厂物质平衡得补水率=+=0.01082+0.004425+0.01622=0.031473.1.2. 给水系数=+-=1+0.01622+0.004425-0.03257=0.99453.1.3. 各小汽流量系数表3-1 门杆漏汽、轴封漏汽数据代号123456789汽水流量184238966240290820993236257213691551流量系数0.00090570.00019

24、120.032570.0014290.0010320.0015910.0012640.00067310.0007626汽水比焓3397.23397.21205.23024.33024.33024.33024.331693474代号101112131415161718汽水流量278522000658007700033000127058211880910流量系数0.0013690.010810.032350.037860.016220.0006240.0028620.00092440.0004474汽水比焓34743169316984.13397.23154.73154.73154.73154.7

25、3.2. 汽轮机进汽参数计算3.1.1. 主蒸汽参数由主汽门前压力=16.68Mpa,温度=538,查水蒸所性质表,得主蒸汽比焓值=3398.8kj/kg。主汽门后压力=(1-)=(1-0.04)16.68=16.013Mpa。由=16.013Mpa,=3398.8kj/kg,查表,得主汽门后汽温=535.33.1.2. 再热蒸汽参数由中联门前压力=3.323Mpa,温度=538,查水蒸气性质表,得再热蒸汽比焓值=3539.4 kj/kg。中联门后再热汽压=(1-)=(1-0.02)3.323=3.257Mpa。同=3.257Mpa,=3539.4 kj/kg,查水蒸所性质表,得中联门后再热汽

26、温=537.73.3. 辅助计算3.1.1. 均压箱计算以加权平均法计算均压箱内平均进汽比焓。计算详见下表3-2 均压箱比焓表项目2高压门杆5高压轴封27高压轴封8中压轴封29中压轴封2漏汽量Gi,kg/h38920992572136915517980漏汽系数ai0.00019120.0010320.0012640.00067310.00076260.003923漏汽点比焓hi3397.23024.33024.331693474总焓aihi0.649793.121373.824752.133212.6494112.37854平均比焓hjy3154.73.1.2. 轴封加热器计算以加权平均法计算

27、轴封加热器内平均进汽比焓。计算详见下表3-3 轴封加热器比焓表项目15箱轴封加18低缸出漏汽量Gi,kg/h12709102180漏汽系数ai0.00062440.00044740.0010719漏汽点比焓hi3154.73154.7总焓aihi1.970011.411583.38160平均比焓hjy3154.73.1.3. 凝汽器计算由=0.0044Mpa=4.4Kpa,查水蒸所性质表,得=30.6将所得数据与表2-1的数据一起,以各抽汽口的数据为节点,在h-s图上绘制出汽轮机的汽态膨胀过程线,见图3.2图3.2汽轮机的汽态膨胀过程线3.4. 各加热器进、出水参数计算3.4.1. 高压加热器

28、H1加热器压力:=(1-)=(1-0.03)*5.945=5.767Mpa式中第一抽汽口压力;抽汽管道相对压损;由=5.767Mpa,查水蒸所性质表得加热器饱和温度=273.0H1出水温度:=-t=273.0-(-1.7)=274.7式中t加热器上端差。H1疏水温度:=+=243.5+5.5=249.0式中加热器下端差,=5.5进水温度,其值从高压加热器H2的上端差t计算得到。已知加热器水侧压力=21.47Mpa,由=274.7,查得H1出水比焓=1204.8kj/kg由=243.5,=21.47Mpa,查得H1进水比焓=1056.6 kj/kg由=249.0,=5.767Mpa,查得H1疏水

29、比焓=1080.9 kj/kg。至此,高压加热器H1的进、出口汽水参数已全部算出。3.4.2. 高压加热器H2加热器压力:=(1-)=(1-0.03)*3.668=3.558Mpa式中第二抽汽口压力;抽汽管道相对压损;由=3.558Mpa,查水蒸所性质表得加热器饱和温度=243.5H2出水温度:=-t=243.5-0=243.5式中t加热器上端差。H2疏水温度:=+=206.7+5.5=212.2式中加热器下端差,=5.5进水温度,其值从高压加热器H3的上端差t计算得到。已知加热器水侧压力=21.47Mpa,由=243.5,查得H2出水比焓=1056.6kj/kg由=243.5,=21.47M

30、pa,查得H2进水比焓=890.4 kj/kg由=249.0,=3.558Mpa,查得H2疏水比焓=908.2 kj/kg。至此,高压加热器H2的进、出口汽水参数已全部算出。3.4.3. 高压加热器H3加热器压力:=(1-)=(1-0.03)*1.776=1.722Mpa式中第三抽汽口压力;抽汽管道相对压损;由=1.722Mpa,查水蒸所性质表得加热器饱和温度=204.9H3出水温度:=-t=204.9-(-1.7)=206.7式中t加热器上端差。H3疏水温度:=+=177.0+5.5=182.5式中加热器下端差,=5.5进水温度,其值从除氧器H4的上端差t计算得到。已知加热器水侧压力=21.

31、47Mpa,由=206.7,查得H3出水比焓=890.4kj/kg由=177.0,=21.47Mpa,查得H3进水比焓=761.0 kj/kg由=182.5,=1.722Mpa,查得H3疏水比焓=774.5kj/kg。至此,高压加热器H3的进、出口汽水参数已全部算出。3.4.4. 除氧器H4加热器压力:=(1-)=(1-0.05)*0.964=0.916Mpa式中第四抽汽口压力;抽汽管道相对压损;由=0.916Mpa,查水蒸所性质表得加热器饱和温度=176.1H4出水温度:=-t=176.1-0=176.1式中t加热器上端差。H4疏水温度:=+=141.1+0=141.1式中加热器下端差,=0

32、进水温度,其值从低压加热器H5的上端差t计算得到。已知加热器水侧压力=0.916Mpa,由=176.1,查得H4出水比焓=746.0kj/kg由=141.1,=0.916Mpa,查得H4进水比焓=594.4 kj/kg由=141.1,=0.916Mpa,查得H4疏水比焓=594.4kj/kg。至此,除氧器H4的进、出口汽水参数已全部算出。3.4.5. 低压加热器H5加热器压力:=(1-)=(1-0.03)*0.416=0.404Mpa式中第五抽汽口压力;抽汽管道相对压损;由=0.404Mpa,查水蒸所性质表得加热器饱和温度=144.0H5出水温度:=-t=144.0-2.8=141.1式中t加

33、热器上端差。H5疏水温度:=+=120.3+5.5=125.8式中加热器下端差,=5.5进水温度,其值从低压加热器H6的上端差t计算得到。已知加热器水侧压力=2.758Mpa,由=141.1,查得H5出水比焓=595.6kj/kg由=120.3,=2.758Mpa,查得H5进水比焓=507.0 kj/kg由=125.8,=0.404Mpa,查得H5疏水比焓=528.7kj/kg。至此,低压加热器H5的进、出口汽水参数已全部算出。3.4.6. 低压加热器H6加热器压力:=(1-)=(1-0.03)*0.226=0.219Mpa式中第六抽汽口压力;抽汽管道相对压损;由=0.219Mpa,查水蒸所性

34、质表得加热器饱和温度=123.1H6出水温度:=-t=123.1-2.8=120.3式中t加热器上端差。H6疏水温度:=+=98.4+5.5=103.9式中加热器下端差,=5.5进水温度,其值从低压加热器H7的上端差t计算得到。已知加热器水侧压力=2.758Mpa,由=120.3,查得H6出水比焓=507.0kj/kg由=98.4,=2.758Mpa,查得H6进水比焓=414.2 kj/kg由=103.9,=0.219Mpa,查得H6疏水比焓=435.5kj/kg。至此,低压加热器H6的进、出口汽水参数已全部算出。3.4.7. 低压加热器H7加热器压力:=(1-)=(1-0.03)*0.109

35、=0.106Mpa式中第七抽汽口压力;抽汽管道相对压损;由=0.106Mpa,查水蒸所性质表得加热器饱和温度=101.2H7出水温度:=-t=101.2-2.8=98.4式中t加热器上端差。H7疏水温度:=+=56.3+5.5=61.8式中加热器下端差,=5.5进水温度,其值从低压加热器H8的上端差t计算得到。已知加热器水侧压力=2.758Mpa,由=98.4,查得H7出水比焓=414.2kj/kg由=56.3,=2.758Mpa,查得H7进水比焓=238.0 kj/kg由=61.8,=0.106Mpa,查得H7疏水比焓=258.7kj/kg。至此,低压加热器H7的进、出口汽水参数已全部算出。

36、3.4.8. 低压加热器H8加热器压力:=(1-)=(1-0.03)*0.0197=0.0191Mpa式中第八抽汽口压力;抽汽管道相对压损;由=0.0191Mpa,查水蒸所性质表得加热器饱和温度=59.1H8出水温度:=-t=59.1-2.8=56.3式中t加热器上端差。H8疏水温度:=+=32.8+5.5=38.3式中加热器下端差,=5.5进水温度,其值从轴封加热器的上端差t计算得到。已知加热器水侧压力=2.758Mpa,由=56.3,查得H8出水比焓=237.9kj/kg由=32.8,=2.758Mpa,查得H8进水比焓=139.9 kj/kg由=38.3,=0.0191Mpa,查得H8疏

37、水比焓=160.4kj/kg。至此,低压加热器H8的进、出口汽水参数已全部算出。表3-4 回热加热系统汽水参数计算项目H1H2H3H4H5H6H7H8SG汽侧抽汽压力Pj5.9453.6681.7760.9640.4160.2260.1090.0197抽汽焓hj3144.23027.13352.23169.02978.52851.02716.02455.83154.7抽汽管道压损Pj0.030.030.030.050.030.030.030.03加热侧压力Pj5.7673.5581.7230.9160.4040.2190.1060.0190.098汽侧饱和温度ts273.0243.5205.0

38、176.1143.9123.1101.259.1水侧水侧压力Pw21.4721.4721.470.9162.7582.7582.7582.7582.758加热侧上端差t-1.70-1.702.82.82.82.8出水温度twj274.7243.5206.7176.1141.1120.398.456.330.7出水比焓hwj1204.81056.6890.4746.0595.6507.0414.2237.9进水温度twj243.5206.7176.1141.1120.398.456.330.730.6进水比焓hwj1056.6890.4773.2594.4507.0414.2239.6131.0

39、加热器下端差t15.55.55.505.55.55.5-5.5疏水温度tdj249.0212.2181.6141.1125.8103.961.859.136.2疏水比焓hdj1080.9 908.1 770.6 594.4 528.7 435.5 258.7 247.3 415.0 3.5. 高压加热器组抽汽系数计算3.5.1. 由高压加热器H1热平衡计算高压加热器H1的抽汽系数 :=0.07143高压加热器H1的疏水系数 :=0.071433.5.2. 由高压加热器H2热平衡计算、高压加热器H2的抽汽系数 :=0.07218高压加热器H2的疏水系数 :=+=0.07143+0.07218=0

40、.14362再热器流量系数=1-=1-0.07143-0.07218-0.0001912-0.001429-0.001032-0.001591-0.001264=0.85093.5.3. 由高压加热器H3热平衡计算本级计算时,高压加热器H3的进水比焓为未知,故先计算给水泵的介质比焓升。如图3-3所示,泵入口静压:=+=0.916 +975*9.8*22.4=1.130Mpa式中 除氧器压力,Mpa;除氧器至给水泵水的平均密度, 。给水泵内介质平均压力=0.5*(+)=0.5*(21.47+1.130)=11.30 Mpa给水泵内介质平均比焓:取=746.0根据=11.30 Mpa和=746.0

41、查得:给水泵内介质平均比容=0.001112给水泵介质焓升=-= =27.3给水泵出口焓:=+=746.0+27.3=773.2图3.3 给水泵焓升示意图高压加热器H3的抽汽系数: =0.03749高压加热器H3的疏水系数 :=+=0.14362+0.03749=0.18113.6. 除氧器抽汽系数计算除氧器出水流量:=+=0.99447 +0.032570791=1.02704除氧器物质平衡和热平衡见图3-4。由于除氧器为汇集式加热器,进水流量为未知。但利用简捷算法可避开求取。图3.4 除氧器热平衡和物质平衡图 = =0.042323.7. 低压加热器组抽汽系数计算3.7.1. 由低压加热器

42、H5热平衡计算低压加热器H5的出水系数:=- =1.02704-0.18110-0.04232-0.001430-0.001591-0.001369-0.03235 =0.76688低压加热器H5的抽汽系数:=0.02773低压加热器H5的疏水系数:=0.027733.7.2. 由低压加热器H6热平衡计算低压加热器H6的抽汽系数: = =0.02838低压加热器H6的疏水系数:=+=0.02772+0.02838=0.056113.7.3. 由低压加热器H7热平衡计算由于低压加热器H8的疏水采用疏水泵打回本级的主凝结水出口的形式,低压加热器H7的进水比焓未知,故先预选=239.5kj/kg,最

43、后校核。则低压加热器H7的抽汽系数:=0.04699低压加热器H7的疏水系数:=+=0.05611+0.04699=0.103103.7.4. 由低压加热器H8热平衡计算由于低加H8的进水焓、疏水焓为未知,故先计算轴封加热器SG。又由于轴封加热器SG的出水系数未知,故先预选=0.63094,最后校核。由SG的热平衡,得轴封加热器出水焓:=131.14kj/kg由=2.758Mpa,=131.14 kj/kg,查得轴封加热器出水温度=30.69。由于低压加热器H8未设疏水冷却器,所以疏水温度=59.1由=0.0197Mpa, =59.1查得低压加热器H8疏水焓=247.3 kj/kg低压加热器H

44、8的抽汽系数: = =0.02997低压加热器H8的疏水系数:=+=0.10319+0.02998=0.133073.8. 凝汽系数计算3.8.1. 小汽机抽汽系数=0.037513.8.2. 由凝汽器的质量平衡计算 =0.76667-0.13307-0.03751-0.003924-0.03786 =0.554513.8.3. 由汽轮机汽侧平衡校验H4抽汽口抽汽系数和=+=0.04252+0.03751+0.03235+0.01082=0.12300各加热器抽汽系数和=+ =0.07143+0.07218+0.03749+0.12320+0.02772+0.02838+0.04709+0.0

45、2998 =0.43718轴封漏汽系数和=+ =0.0001913+0.001430+0.001032+0.001591+0.001265+0.0006731+ 0.0007626+0.001369 =0.008314凝汽系数:=1-=1-0.43718-0.008314=0.55451该值与由凝汽器质量平衡计算得到的相等,凝汽系数计算正确。由低加H5轴封加热器SG的质量平衡校验轴封加热器SG的出水系数:=-=0.76667-0.13317=0.63094轴封加热器SG的出水系数=0.63094,与初选值相等。校验低压加热器H7的进水比焓:= =(0.63094*237.9+0.13307*2

46、47.3)/(0.63094+0.13317) =239.5kj/kg低压加热器H7的进水比焓=239.5kj/kg,与初选值相等。3.9. 汽轮机内功计算3.9.1. 凝汽流做功=(-+)-* =0.55451*(3398.8-2315.6+512.3)-0.0009057*512.3 =884.3kj/kg式中 再热汽吸热,=-=3539.4-3027.1=512.3 kj/kg3.9.2. 抽汽流做功1kgH1抽汽做功=-=3398.8-3144.2=254.6 kj/kg1kgH2抽汽做功=-=3398.8-3027.1=492.0 kj/kg1kgH3抽汽做功=-+=3398.8-3

47、352.2+512.3=558.9 kj/kg1kgH4抽汽做功=-+=3398.8-3169.0+512.3=742.1 kj/kg1kgH5抽汽做功=-+=3398.8-2978.5+512.3=932.6 kj/kg1kgH6抽汽做功=-+=3398.8-2851.0+512.3=1060.1kj/kg1kgH7抽汽做功=-+=3398.8-2716.0+512.3=1195.1 kj/kg1kgH8抽汽做功=-+=3398.8-2455.8+512.3=1455.3kj/kg表3-5 做功量和抽汽量计算结果H1H2H3H4H5H6H7H81kg抽汽做功254.6492.0558.974

48、2.1932.61060.11195.11455.3各级抽汽量143979 145487 75560 247908 55885 57211 94717 60406 抽汽流总内功:=+ =0.07143*254.6+0.07218*492.0+0.03749*558.9+0.12300*742.1+0.02773*932.6+0.02838*1060.1+0.04699*1195.1+0.02997*1455.3 =322.1 kj/kg3.9.3. 附加功量附加功量是指各小汽流量做功之和:=*(-)+(+)*(-)+(+)*(-)+*(-+)+(+)*(-+) =0.0001913*(3398

49、.8-3397.2)+(0.001430+0.001032)*(3398.8-3395.3)+ (0.001591+0.001265)*(3398.8-3024.3)+0.0006731*(3398.8-3169.0+512.3)+(0.0007626+0.001369)*(3398.8-3474.0+512.3) =2.510 kj/kg3.9.4. 汽轮机内功=+=884.3+322.1+2.51=1208.9 kj/kg3.10. 汽轮机内效率、热经济指标、汽水流量计算汽轮机比热耗:=-+*=3398.8-1204.8+0.85088*512.3=2629.9 kj/kg汽轮机绝对内效率

50、:=/=1208.9/2629.9=0.45967汽轮机绝对电效率:=*=0.985*0.99*0.45967=0.44824汽轮机热耗率:=3600/=3600/0.44824=8031.4 kJ/(kWh)汽轮机汽耗率:=/=8031.4/2629.9=3.0539 kg/(kWh)汽轮机进汽量:=1000*=1000*3.0539*660=2015555.6 kg/h式中 汽轮机额定功率,=660MW。检验:汽轮机进汽量=2015555.6kg/h,与初选值误差:=(2033724-2015555.6)/2015555.6=0.901%误差在允许范围内。给水流量:=*=1.02704*2

51、015555.6=2070064.3 kg/h凝结水泵流量:=*=0.63094*2015555.6=1271694.7 kg/h凝汽量:=*=0.55451*2015555.6=1117645.2 kg/h第一级抽汽量:=*=0.07143*2015555.6=143979 kg/h第二级抽汽量:=*=0.07218*2015555.6=145487 kg/h第三级抽汽量:=*=0.03749*2015555.6=75560 kg/h第四级抽汽量:=*=0.12300*2015555.6=247908 kg/h第五级抽汽量:=*=0.02773*2015555.6=55885 kg/h第六级抽汽量:=*=0.02838*2015555.6=57211 kg/h第七级抽汽量:=*=0.04699*2015555.6=94717 kg/h第八级抽汽量:=*=0.02997*2015555.6=60406 kg/h3.11. 全厂性热经济指标计算3.11.1. 锅炉参数计算过热蒸汽参数:由=17.42Mpa,=541,查表得过热蒸汽出口比焓=3399.0 kj/kg再热蒸

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论