第2讲玻尔量子论,实物粒子的波粒二象性1_第1页
第2讲玻尔量子论,实物粒子的波粒二象性1_第2页
第2讲玻尔量子论,实物粒子的波粒二象性1_第3页
第2讲玻尔量子论,实物粒子的波粒二象性1_第4页
第2讲玻尔量子论,实物粒子的波粒二象性1_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、(四)波尔(四)波尔(BohrBohr)的量子论)的量子论nPlanck-EinsteinPlanck-Einstein 光量子概念必然会促进物理学其他重大光量子概念必然会促进物理学其他重大疑难问题的解决。疑难问题的解决。19131913年年 BohrBohr 把这种概念运用到原子结把这种概念运用到原子结构问题上,提出了他的原子的量子论。该理论今天已为量构问题上,提出了他的原子的量子论。该理论今天已为量子力学所代替,但是它在历史上对量子理论的发展曾起过子力学所代替,但是它在历史上对量子理论的发展曾起过重大的推动作用,而且该理论的某些核心思想至今仍然是重大的推动作用,而且该理论的某些核心思想至今

2、仍然是正确的,在量子力学中保留了下来正确的,在量子力学中保留了下来 n(1 1)波尔假定)波尔假定 n(2 2)氢原子线光谱的解释)氢原子线光谱的解释 n(3 3)量子化条件的推广)量子化条件的推广 n(4 4)波尔量子论的局限性)波尔量子论的局限性(1)波尔假定)波尔假定nBohr Bohr 在他的量子论中提出了两个极为重要的概念,可在他的量子论中提出了两个极为重要的概念,可以认为是对大量实验事实的概括。以认为是对大量实验事实的概括。1.1.原子具有能量不连续原子具有能量不连续的的稳定状态稳定状态的概念。的概念。即即定态定态2.2.量子跃迁的概念量子跃迁的概念. . 原子的稳定状态只可能是某

3、些具有一定分立值能量原子的稳定状态只可能是某些具有一定分立值能量 E E1 1,E,E2 2,., E,., En n 的状态。为了具体确的状态。为了具体确定这些能量数值,定这些能量数值,BohrBohr提出了量子化条件:提出了量子化条件:原子处于定态时不辐射,但是因某种原因,电子可以从一个能级原子处于定态时不辐射,但是因某种原因,电子可以从一个能级 E En n 跃迁到另一个较低(高)跃迁到另一个较低(高)的能级的能级 E Em m ,同时将发射(吸收)一个光子。光子的频率为:,同时将发射(吸收)一个光子。光子的频率为: 而处于基态(能量最低态)的原子,则不放出光子而稳定的存在着而处于基态(

4、能量最低态)的原子,则不放出光子而稳定的存在着3,2, 1 nnLL其其中中的的整整数数倍倍,即即取取只只能能电电子子的的角角动动量量频频率率条条件件 hEEmnmn (2)氢原子线光谱的解释)氢原子线光谱的解释n根据这两个概念,可以圆满地解释氢原子根据这两个概念,可以圆满地解释氢原子的线光谱。的线光谱。假设氢原子中假设氢原子中的电子绕核作的电子绕核作圆周运动圆周运动 +Fc vre222rervFc )1(22rev vrprL |角角动动量量由量子由量子化条件化条件n 222)(nvr )2(22222222enrnrer 轨轨道道半半径径第第一一 Bohrern2201 电子的能量电子的

5、能量revVTE2221 hEEmn 与氢原子线光谱与氢原子线光谱的经验公式比较的经验公式比较)1(22rev rerere221222 )2(222enr nEne 2242 ,3,2,1 n根据根据 Bohr Bohr 量子跃迁的量子跃迁的概念概念2221224224mene 1142234nme 1122expnmcRH 得得 Rydberg Rydberg 常数常数ceRH344 与实验完全一致与实验完全一致(3)量子化条件的推广)量子化条件的推广nhndnLd 2是相应的广义坐标。是相应的广义坐标。是广义动量,是广义动量,其中其中iiiiiqphndqp 由理论力学知,若将角动量由理

6、论力学知,若将角动量 L L 选为广义动量,则选为广义动量,则为广义坐标。为广义坐标。考虑积分并利用考虑积分并利用 Bohr Bohr 提出的量子化条件,有提出的量子化条件,有索末菲索末菲将将 BohrBohr 量子化条件推广为推广后的量子化条件可用于多量子化条件推广为推广后的量子化条件可用于多自由度情况,自由度情况,这样这样索末菲量子化条件索末菲量子化条件不仅能解释氢原子光谱,而且对于只有不仅能解释氢原子光谱,而且对于只有一个电子(一个电子(LiLi,NaNa,K K 等)的一些原子光谱也能很好的解释。等)的一些原子光谱也能很好的解释。(4)波尔量子论的局限性波尔量子论的局限性n1. 1.

7、不能证明较复杂的原子甚至比氢稍微复杂的氦不能证明较复杂的原子甚至比氢稍微复杂的氦原子的光谱;原子的光谱; n2. 2. 不能给出光谱的谱线强度(相对强度);不能给出光谱的谱线强度(相对强度); n3. Bohr 3. Bohr 只能处理周期运动,不能处理非束缚态问只能处理周期运动,不能处理非束缚态问题,如散射问题;题,如散射问题; n4. 4. 从理论上讲,能量量子化概念与经典力学不相从理论上讲,能量量子化概念与经典力学不相容。多少带有人为的性质,其物理本质还不清楚。容。多少带有人为的性质,其物理本质还不清楚。 波尔量子论首次打开了认识原子结构的大门,波尔量子论首次打开了认识原子结构的大门,取

8、得了很大的成功。但是它的局限性和存在取得了很大的成功。但是它的局限性和存在的问题也逐渐为人们所认识的问题也逐渐为人们所认识 3 3 实物粒子的波粒二象性实物粒子的波粒二象性n(一)(一)L LDe Broglie De Broglie 关系关系 n(二)(二)de Broglie de Broglie 波波 n(三)驻波条件(三)驻波条件 n(四)(四)de Broglie de Broglie 波的实验验证波的实验验证(一)LDe Broglie 关系 E = h E = h = E/h = E/h P = h/ P = h/ = h/p = h/p 该关系称为该关系称为de. Brogli

9、ede. Broglie关系。关系。根据根据Planck-Einstein Planck-Einstein 光量子论,光具有波动粒子二重性,光量子论,光具有波动粒子二重性, 以及以及BohrBohr量子论,启发了量子论,启发了de. Brogliede. Broglie,他,他 (1 1)仔细分析了光的微粒说与波动说的发展史;)仔细分析了光的微粒说与波动说的发展史; (2 2)注意到了几何光学与经典力学的相似性,)注意到了几何光学与经典力学的相似性,提出了实物粒子提出了实物粒子(静质量(静质量 m m 不等于不等于 0 0 的粒子)也具有波动性。也就是说,粒的粒子)也具有波动性。也就是说,粒子

10、和光一样也具有波动子和光一样也具有波动- -粒子二重性,二方面必有类似的关系相粒子二重性,二方面必有类似的关系相联系。联系。(一)LDe Broglie 关系 E = h E = h = E/h = E/h P = h/ P = h/ = h/p = h/p 该关系称为该关系称为de. Brogliede. Broglie关系。关系。根据根据Planck-Einstein Planck-Einstein 光量子论,光具有波动粒子二重性,光量子论,光具有波动粒子二重性, 以及以及BohrBohr量子论,启发了量子论,启发了de. Brogliede. Broglie,他,他 (1 1)仔细分析了

11、光的微粒说与波动说的发展史;)仔细分析了光的微粒说与波动说的发展史; (2 2)注意到了几何光学与经典力学的相似性,)注意到了几何光学与经典力学的相似性,提出了实物粒子提出了实物粒子(静质量(静质量 m m 不等于不等于 0 0 的粒子)也具有波动性。也就是说,粒的粒子)也具有波动性。也就是说,粒子和光一样也具有波动子和光一样也具有波动- -粒子二重性,二方面必有类似的关系相粒子二重性,二方面必有类似的关系相联系。联系。(二)(二)de Broglie 波波。,其其中中nktrkA 22cos )(exptrkiA 因为自由粒子的能量因为自由粒子的能量 E E 和动量和动量 p p 都是常量,

12、所以由都是常量,所以由de Broglie de Broglie 关系可关系可知,与自由粒子联系的波的频率知,与自由粒子联系的波的频率和波矢和波矢k k(或波长(或波长)都不变,即是一)都不变,即是一个单色平面波。由力学可知,频率为个单色平面波。由力学可知,频率为,波长为,波长为,沿单位矢量,沿单位矢量 n n 方向方向传播的平面波可表为:传播的平面波可表为:写成复数形式写成复数形式这种波就是与自由粒子相联系的单色平面波,或称为描写自由粒子的平面这种波就是与自由粒子相联系的单色平面波,或称为描写自由粒子的平面波,这种写成复数形式的波称为波,这种写成复数形式的波称为 de Broglie de

13、Broglie 波波de Broglie de Broglie 关系:关系: = E/h = E/h = = 2 = = 2 E/h = E/E/ = h/p = h/p k = 1/ k = 1/ = 2 / = p/p/ )(expEtrpiA(三)驻波条件(三)驻波条件,3 ,2 , 12 nnr hp 为了克服为了克服 Bohr Bohr 理论带有人为性质的缺陷,理论带有人为性质的缺陷, de Brogliede Broglie 把原子定态与驻波联系起来,即把粒子能量量子化问题和把原子定态与驻波联系起来,即把粒子能量量子化问题和有限空间中驻波的波长(或频率)的分立性联系起来。有限空间中

14、驻波的波长(或频率)的分立性联系起来。例如:例如:氢原子中作稳定圆氢原子中作稳定圆周运动的电子相应的驻波周运动的电子相应的驻波示意图示意图要求圆周长是要求圆周长是波长的整数倍波长的整数倍于是角动量:于是角动量:,3,2,1 nnrpLde Broglie de Broglie 关系关系rnrnhnrh 22r代代入入实验验证实验验证de Broglie de Broglie 波在波在19241924年提出后,在年提出后,在1927-19281927-1928年由年由 Davisson Davisson 和和GermerGermer 以及以及 G.P.ThomsonG.P.Thomson 的电子衍射实验所证实。的电子衍射实验所证实。法拉第园法拉第园 筒筒入射电子注入射电子注镍单晶镍单晶 d回忆:回忆:衍射最大值公式衍射最大值公式sin0, 1, 2,dmm 问题? 物质粒子既然是波,那为什么人们在过去长期实践中把它们看成经典粒子并没有犯什么错

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论